版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一工厂生产某种产品的生产量(单位:吨)与利润(单位:万元)的部分数据如表所示:从所得的散点图分析可知,与线性相关,且回归方程为,则( )ABCD2若曲线在点(0,n)处的切线方程x-y+1=0,则()A,B,C,D,3已知函数的导函数为,且满足,则( )AB1C-1D4已知函数,设,则ABCD5已知,则的最小值为( )ABCD6已知,均为正实数,则,的值( )A都大于1B都小于1C至多有一个不小于1D至少有一个不小于17若 ,则( )ABC或D或8等差数列an中的a2,A5B4C
3、3D29在极坐标系中,点与之间的距离为()A1B2C3D410世界杯参赛球队共32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小组出线),这16个队按照确定的程序进行淘汰赛,决出8强,再决出4强,直到决出冠、亚军和第三名、第四名,则比赛进行的总场数为()A64B72C60D5611已知集合,则等于( )A B CD 12执行如图所示的程序框图,若输入x值满足则输出y值的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,则圆的极坐标方程为_.14重庆市新课程改革要求化学、生物、政治、地理这四门学科为高考选考
4、科目.现在甲、乙、丙三位同学分别从这四门学科中任选两科作为选考科目,则四门学科都有人选的概率为_.15如图所示,直线分抛物线与轴所围图形为面积相等的两部分,则的值为_16求值:_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某种子培育基地新研发了两种型号的种子,从中选出90粒进行发芽试验,并根据结果对种子进行改良.将试验结果汇总整理绘制成如下列联表:(1)将列联表补充完整,并判断是否有99%的把握认为发芽和种子型号有关;(2)若按照分层抽样的方式,从不发芽的种子中任意抽取20粒作为研究小样本,并从这20粒研究小样本中任意取出3粒种子,设取出的型号的种子数为,求的分
5、布列与期望.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,其中.18(12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.()求出甲、乙所付租车费用相同的概率;()求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望19(1
6、2分)已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)20(12分)在二项式的展开式中,第三项的系数与第四项的系数相等.(1) 求的值,并求所有项的二项式系数的和;(2) 求展开式中的常数项.21(12分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分二层)从该年级的学生中共抽查100名同学.(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位
7、数(单位精确到0.01);(2)如果以身高达到作为达标的标准,对抽取的100名学生,得到列联表:体育锻炼与身高达标列联表身高达标身高不达标合计积极参加体育锻炼60不积极参加体育锻炼10合计100完成上表;请问有多大的把握认为体育锻炼与身高达标有关系?参考公式:.参考数据:0.400.250.150.100.050.0250.0100.0050.0010.7081.3232.0722.7063.8415.0246.6357.87910.82822(10分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改
8、革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据表格中的数据计算出和,再将点的坐标代入回归直线方程可求出实数的值.【详解】由题意可得,由于回归直线过样本中心
9、点,则有,解得,故选:C.【点睛】本题考查利用回归直线方程求原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.2、A【解析】根据函数的切线方程得到切点坐标以及切线斜率,再根据导数的几何意义列方程求解即可【详解】曲线在点处的切线方程是,则,即切点坐标为,切线斜率,曲线方程为,则函数的导数 即,即,则,故选A【点睛】本题主要考查导数的几何意义的应用,属于中档题应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求
10、解.3、C【解析】试题分析:函数的导函数为,且满足,把代入可得,解得,故选C.考点:(1)导数的乘法与除法法则;(2)导数的加法与减法法则.4、D【解析】对函数求导,得出函数在上单调递减,利用中间值法比较、的大小关系,利用函数的单调性得出、三个数的大小关系【详解】,所以,函数在上单调递减,即,则,函数在上单调递减,因此,故选D.【点睛】本题考查函数值的大小比较,这类问题需要结合函数的单调性以及自变量的大小,其中单调性可以利用导数来考查,本题中自变量的结构不相同,可以利用中间值法来比较,考查推理能力,属于中等题5、C【解析】试题分析:由题意得,所以,当时,的最小值为,故选C.考点:向量的运算及模
11、的概念.6、D【解析】分析:对每一个选项逐一判断得解.详解:对于选项A,如果a=1,b=2,则,所以选项A是错误的.对于选项B,如果a=2,b=1,则,所以选项B是错误的.对于选项C,如果a=4,b=2,c=1,则,所以选项C是错误的.对于选项D,假设,则,显然二者矛盾,所以假设不成立,所以选项D是正确的.故答案为:D.点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)三个数至少有一个不小于1的否定是7、B【解析】根据组合数的公式,列出方程,求出的值即可【详解】,或,解得(不合题意,舍去),或;的值是1故选:B【点睛】本题考查了组合数公式的应用问题,是基础题目8、D【解析】
12、求导,根据导数得到a2,a4030是方程x【详解】由题意可知:fx=x2-8x+6,又a2,a4030是函数flog2【点睛】本题考查了等差数列的性质,函数的极值,对数运算,综合性强,意在考查学生的综合应用能力.9、B【解析】可先求出判断为等边三角形即可得到答案.【详解】解析:由与,知,所以为等边三角形,因此【点睛】本题主要考查极坐标点间的距离,意在考查学生的转化能力及计算能力,难度不大.10、A【解析】分析:先确定小组赛的场数,再确定淘汰赛的场数,最后求和.详解:因为8个小组进行单循环赛,所以小组赛的场数为因为16个队按照确定的程序进行淘汰赛,所以淘汰赛的场数为因此比赛进行的总场数为48+1
13、6=64,选A.点睛:本题考查分类计数原理,考查基本求解能力.11、C【解析】由不等式性质求出集合A、B,由交集的定义求出可得答案.【详解】解:可得;,可得=故选C.【点睛】本题考查了交集及其运算,求出集合A、B并熟练掌握交集的定义是解题的关键.12、A【解析】直接利用程序框图和分段函数求出结果.【详解】当时,当时,得,即.故选:A【点睛】本题考查了程序框图以及分段函数求值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,令,可以求出圆的圆心坐标,又因为圆经过点,则圆的半径为C,P两点间的距离,利用极坐标公式即可求出圆的半径,则可写出圆的极坐标方程.【详解】
14、在中,令,得,所以圆的圆心坐标为因为圆经过点,所以圆的半径,于是圆过极点,所以圆的极坐标方程为【点睛】本题考查用极坐标公式求两点间的距离以及求点的坐标,考查圆的极坐标方程,考查了学生的计算能力,属于基础题.14、【解析】选科门数分三种:第一种只选二门,第二种选3门,第三种是四门都选可以通过计算前两种的选法或概率得出第三种的选法或概率【详解】每人任选两门有种,只有两门学科有人选共有种,有三门学科有人选共有种,(注:减是减去只有两门被选中的情形),所以故答案为:【点睛】本题考查古典概型,考查排列组合的应用,解题关键是求出满足要求的选科数方法数15、【解析】根据题意求出直线与抛物线的交点横坐标,再根
15、据定积分求两部分的面积,列出等式求解即可.【详解】联立 或.由图易得由题设得,即.即化简得.解得.故答案为:【点睛】本题主要考查了定积分的运用,需要根据题意求到交界处的点横坐标,再根据定积分的几何意义列式求解即可.属于中档题.16、1【解析】分析:观察通项展开式中的中的次数与中的一致。详解:通项展开式中的,故=点睛:合并二项式的展开式,不要纠结整体的性质,抓住具体的某一项中的中的次数与中的一致,有负号时注意在上还是在上。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) 有99%的把握认为发芽和种子型号有关(2)见解析【解析】根据表格完成表格的填空并计算出做出判断的可
16、能值为0,1,2,3分别计算出概率,然后计算期望【详解】(1)所以有99%的把握认为发芽和种子型号有关.(2)按分层抽样的方式抽到的20粒种子中,型号的种子共4粒,型号的种子共16粒,所以的可能值为0,1,2,3,所以的分布列为.【点睛】本题考查了的计算和分布列与期望,只要将联表补充完整,按照计算方法即可求出,继而可以求出分布列与期望,较为基础。18、()()02468P数学期望E=2+4+6+8=【解析】(1)由题意得,甲,乙在三小时以上且不超过四小时还车的概率分别为记甲、乙两人所付得租车费用相同为事件,则所以甲、乙两人所付租车费用相同的概率为(2)的可能取值为0,2,4,6,8,分布列如下
17、表:02468考点:离散型随机变量的分布列及概率19、(1);(2);【解析】(1)运用数列的递推式得时,时,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和【详解】(1)可得时, 则(2)数列满足,可得,即,前项和两式相减可得化简可得【点睛】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题20、 (1)8,256;(2)1792.【解析】(1)由题意利用二项展开式的通项公式,求出的值,可得所有项的二项式系数的和;(2)在二项展开式的通项公式中,令的幂指数等于0,求出的值,即可求得常数项
18、【详解】(1) 二项式的展开式的通项公式为,由已知得,即,解得,所有二项式系数的和为;(2)展开式中的通项公式, 若它为常数项时.所以常数项是【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题21、(1)174,174.55;(2)列联表见解析;.【解析】(1)根据频率分布直方图的平均数与中位数的公式即可求解;(2)根据频率分布直方图求出身高达标与不达标的比例,结合积极参加体育锻炼和不积极参加体育锻炼的比例,完成表格;根据公式计算出即可下结论.【详解】(1)平均数,前两组频率之和为0.25,前三组频率之和为0.8,所以中位数在第三组中位数为.(2)根据频率分布直方图可得身高不达标所占频率为0.25,达标所占频率为0.75,所以身高不达标25人,达标75人,根据分层抽样抽取的积极参加体育锻炼75人,不积极参加体育锻炼的25人,所以表格为:身高达标身高不达标合计积极参加体育锻炼601575不积极参加体育锻炼151025合计7525100假设体育锻炼与身高达标没有关系.所以有把握认为体育锻炼与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高端汽车租赁服务详细协议
- 2024导演合作拍摄协议细则
- 董事长的具体职责职能模板范文5篇
- 2024年度环保垃圾清运服务协议模板
- 2024年个人合伙权益股份转让协议
- 安检服务人员2024劳动协议样本
- 2024年建筑项目安全保证协议
- 文书模板-《合伙销售白酒合同》
- 2024年教育培训业务合作协议
- 2024年度车辆租赁化三方协议
- 饲料加工系统粉尘防爆安全规程
- 妇产科学课件:胎心监测
- 新苏教版科学四年级上册学生活动手册习题与讲解
- 基础护理质量标准及考核评分表
- 商务条款响应表
- 二年级上册美术教案-7. 去远航 -冀教版
- 二年级上册语文课件-10《日月潭》|人教(部编版) (共19张PPT)
- 《诗情画意》教学设计
- 中华文化与传播教材课件
- Unit3 Sports and Fitness Reading for writing健康生活讲义-高中英语人教版(2019)必修第三册
- Unit 4 Viewing Workshop 课件-高中英语北师大版(2019)选择性必修第二册
评论
0/150
提交评论