2022届内蒙古锦山蒙古族中学数学高二第二学期期末质量检测模拟试题含解析_第1页
2022届内蒙古锦山蒙古族中学数学高二第二学期期末质量检测模拟试题含解析_第2页
2022届内蒙古锦山蒙古族中学数学高二第二学期期末质量检测模拟试题含解析_第3页
2022届内蒙古锦山蒙古族中学数学高二第二学期期末质量检测模拟试题含解析_第4页
2022届内蒙古锦山蒙古族中学数学高二第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数在为增函数,则实数的取值范围是( )ABCD2已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数

2、的图象上的所有点( )A先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变3已知复数满足(为虚数单位),则( )ABCD4函数的部分图象如图所示,则函数的解析式为( )ABCD5定义在上的偶函数满足,且当时,函数是定义在上的奇函数,当时,则函数的零点的的个数是( )A9B10C11D126某中学高二年级的一个研究性学习小组拟完成下列两项调查:从某社区430户高收

3、入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是 ( )A用系统抽样,用简单随机抽样B用系统抽样,用分层抽样C用分层抽样,用系统抽样D用分层抽样,用简单随机抽样7若曲线与曲线在它们的公共点处具有公共切线,则实数的值为()ABCD8已知,则方程的实根个数为,且,则( )ABCD9若函数在其定义域内的一个子区间(k1,k1)内不是单调函数,则实数k的取值范围是()A1,)B,2)C1,2)D1,)10设函数,若a=),,则( )ABCD11知,则,的大小关系

4、为( )ABCD12复数的虚部为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某校有高一学生105人,高二学生126人,高三学生42人,现用分层抽样的方法从中抽取13人进行关于作息时间的问卷调查,设问题的选择分为“同意”和“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答题情况的部分信息,估计所有学生中“同意”的人数为_人同意不同意合计高一2高二4高三114 展开式中,项的系数为_15中,则边上中线的长为_16设,函数f是偶函数,若曲线的一条切线的斜率是,则切点的横坐标为_ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一家面包房

5、根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X)18(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(,2)(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在

6、(-3,+3)之外的零件数,求P(X1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(-3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,试用所学知识说明上述监控生产过程方法的合理性;附:若随机变量Z服从正态分布N(,),则P(-3Z+3)=0.9974,19(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.20(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问

7、卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人. (1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.21(12分)已知函数(为自然对数的底数).(

8、1)当时,求函数的极值;(2)若函数在区间上单调递增,求的取值范围.22(10分)学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的列联表:对教师管理水平好评对教师管理水平不满意合计对教师教学水平好评对教师教学水平不满意合计请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教

9、师管理水平全好评的人数为随机变量.求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);求的数学期望和方差.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用函数的导函数在区间恒为非负数列不等式,用分离常数法求得的取值范围.【详解】依题意,在区间上恒成立,即,当时,故,在时为递增函数,其最大值为,故.所以选A.【点睛】本小题主要考查利用导数求解函数单调

10、性有关的问题,考查正切函数的单调性,属于中档题.2、D【解析】由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题3、C【解析】整理得到,根据模长的运算可求得结果.【详解】由得: 本题正确选项:【点睛】本题考查向量模长的求解,属于基础题.4、D【解析】根据最值计算 ,利用周期计算,当时取得最大值2,计算,得到函数解析式.【详解】由题意可知,因为:当

11、时取得最大值2,所以:,所以:,解得:,因为:,所以:可得,可得函数的解析式:故选D【点睛】本题主要考查了正弦型函数的图象与性质,其中解答中根据函数的图象求得函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题5、C【解析】由,得出,转化为函数与函数图象的交点个数,然后作出两个函数的图象,观察图像即可【详解】由于,所以,函数的周期为,且函数为偶函数,由,得出,问题转化为函数与函数图象的交点个数,作出函数与函数的图象如下图所示,由图象可知,当时,则函数与函数在上没有交点,结合图像可知,函数与函数图象共有11个交点,故选C.【点睛】本题考查函数的零点个数,有两种

12、做法:一是代数法,解代数方程;二是图象法,转化为两个函数的公共点个数,在画函数的图象是,要注意函数的各种性质,如周期性、奇偶性、对称性等性质的体现,属于中等题6、D【解析】总体由差异明显的几部分构成时,应选用分层抽样;总体个体数有限、逐个抽取、不放回、每个个体被抽到的可能性均等,应选用简单随机抽样;选D7、A【解析】分析:设公共点,求导数,利用曲线与曲线在它们的公共点处具有公共切线,建立方程组,即可求出a的值.详解:设公共点,曲线与曲线在它们的公共点处具有公共切线,解得.故选:A.点睛:本题考查利用导数研究曲线上某点切线方程,考查学生的计算能力,正确求导是关键.8、A【解析】由与的图象交点个数

13、可确定;利用二项式定理可分别求得和的展开式中项的系数,加和得到结果.【详解】当时,与的图象如下图所示:可知与有且仅有个交点,即的根的个数为 的展开式通项为:当,即时,展开式的项为:又本题正确选项:【点睛】本题考查利用二项式定理求解指定项的系数的问题,涉及到函数交点个数的求解;解题关键是能够将二项式配凑为展开项的形式,从而分别求解对应的系数,考查学生对于二项式定理的综合应用能力.9、D【解析】利用导数研究函数的极值性,令极值点属于已知区间即可.【详解】所以时递减,时,递增,是极值点,因为函数在其定义域内的一个子区间(k1,k1)内不是单调函数,所以,即,故选:D.【点睛】本题主要考查利用导数研究

14、函数的极值,其中考查了利用导数研究函数的单调性,属于中档题.10、D【解析】把化成,利用对数函数的性质可得再利用指数函数的性质得到最后根据的单调性可得的大小关系.【详解】因为且,故,又在上为增函数,所以即.故选:.【点睛】本题考查对数的大小比较,可通过寻找合适的单调函数来构建大小关系,如果底数不统一,可以利用对数的运算性质统一底数,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,难度较易.11、A【解析】由题易知:,故选A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,

15、当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小12、C【解析】利用复数除法运算求得,根据虚部定义得到结果.【详解】 的虚部为:本题正确选项:【点睛】本题考查复数虚部的求解,涉及到复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、126【解析】根据抽样比求出各个年级抽取的人数,然后填表格,最后根据“同意的”比例求所有学生中“同意”的人数.【详解】一共人,抽样比 高一学生:人,高二学生:人,高三学生人,同意不同意合计高一325高二246高三112同意的共有6人,同意的共有人.故答案为:126

16、【点睛】本题考查分层抽样和统计的初步知识,属于基础题型.14、【解析】 二项式展开式中,含项为 它的系数为1故答案为115、【解析】通过余弦定理可以求出的长,而,用余弦定理求出的表达式,代入上式可以直接求出的长【详解】由余弦定理可知:,设,由余弦定理可知:而,即解得,故边上中线的长为【点睛】本题考查了利用余弦定理求三角形中线长的问题本题也可以应用中点三角形来求解,过程如下:延长至,使得,易证出, ,由余弦定理可得:. 16、【解析】先根据f(x)为偶函数求得,再由,解得【详解】由题意可得f(x)=f(-x),即,变形为为任意x时都成立,所以,所以,设切点为,由于是R上的单调递增函数,且所以填【

17、点睛】本题考查函数的奇偶性与单调性及由曲线的斜率求切点横坐标三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)0.108.(2) 1.8,0.72.【解析】试题分析:(1)设表示事件“日销售量不低于100个”,表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此可求出,利用事件的独立性即可求出;(2)由题意可知XB(3,0.6),所以即可列出分布列,求出期望为E(X)和方差D(X)的值.(1)设表示事件“日销售量不低于100个”,表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连

18、续2天日销售量不低于100个且另一天的日销售量低于50个”.因此.(2)X的可能取值为0,1,2,3.相应的概率为,分布列为X0123P0.0640.2880.4320.216因为XB(3,0.6),所以期望为E(X)=30.6=1.8,方差D(X)=30.6(1-0.6)=0.72考点:1.频率分布直方图;2.二项分布.18、(1)P(X1)=0.0408,E(X)=0.0416(2)上述监控生产过程的方法是合理的,详见解析【解析】(1)通过可求出,利用二项分布的期望公式计算可得结果(2)由(1)知落在(-3,+3)之外为小概率事件可知该监控生产过程方法合理【详解】解:(1)由题可知尺寸落在

19、(-3,+3)之内的概率为0.9974,则落在(-3,+3)之外的概率为1-0.9974=0.0026,因为,所以P(X1)=1-P(X=0)=0.0408,又因为XB(16,0.0026),所以E(X)=160.0026=0.0416;(2)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的【点睛】本题考查对正态分布的理解以及二项分布的期望公式,是一道一般难度

20、的概率综合体19、(1);(2)【解析】(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法,考查不等式恒成立及最值,考查转化思想,是中档题20、(1);(2)440【解析】(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【详解】(1)设事件表示至少有1人的年龄低于45岁, 则. (2)由题意知,以手机支付作为首选支付方式的概率为. 设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则, 所以销售额的数学期望(元).【点睛】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论