




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是虚数单位,若,则实数( )A或B-1或1C1D2羽毛球混合双打比赛每队由一男一女两名运动员组
2、成. 某班级从名男生,和名女生,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为( )ABCD3某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD4已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)5设函数恰有两个极值点,则实数的取值范围是( )ABCD6体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C
3、5D67赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD8已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D10959复数在复平面内对应的点为则( )ABCD10己知函数的图象与直线恰有四个公共点,其中,则(
4、 )AB0C1D11已知函数(其中,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:直线是函数图象的一条对称轴;点是函数的一个对称中心;函数与的图象的所有交点的横坐标之和为.其中正确的判断是( )ABCD12 若数列满足且,则使的的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设全集,则_.14如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为_.15已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,使得,则椭圆的离心率取值范围为_.16已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值
5、范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值18(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.19(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.20(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值21(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求
6、证:.22(10分)已知各项均为正数的数列的前项和为,满足,恰为等比数列的前3项(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】由题意得,然后求解即可【题目详解】,.又,.【答案点睛】本题考查复数的运算,属于基础题2、B【答案解析】根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算
7、,可得结果.【题目详解】由题可知:分别从3名男生、3名女生中选2人 :将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【答案点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.3、C【答案解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C4、D【答案解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【题目详解】由题意,a2,令t,则f(x)a记
8、g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t)(t2且t2),则h(t)令(t),则(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)故选:D【答案点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.5、C【答案解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个
9、解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【题目详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【答案点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.6、B【答案解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【题目详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向
10、后转”第4次“向后转”可知需要的次数为4次.故选:B.【答案点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.7、D【答案解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【题目详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【答案点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题8、D【答案解析】确定中前35项里两个数列
11、中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【题目详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【答案点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的9、B【答案解析】求得复数,结合复数除法运算,求得的值.【题目详解】易知,则.故选:B【答案点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.10、A【答案解析】先将函数解析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.【题目详解】函数
12、即直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,因为,故,所以.故选:A.【答案点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.11、C【答案解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否详解:因为为对称中心,且最低点为,所以A=3,且 由 所以,将带入得 ,所以由此可得错误,正确,当时,所以与 有6个交点,设各个交点坐标依次为 ,则,所以正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题12、C【答案解析
13、】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先求出集合,然后根据交集、补集的定义求解即可【题目详解】解:,或;故答案为:【答案点睛】本题主要考查集合的交集、补集运算,属于基础题14、20【答案解析】由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【题目详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆柱组合而成,其体积为.故答案为:20.【答案点睛】本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容
14、易题.15、【答案解析】设,设出直线AB的参数方程,利用参数的几何意义可得,由题意得到,据此求得离心率的取值范围.【题目详解】设,直线AB的参数方程为,(为参数)代入圆,化简得:,存在点,使得,即,故答案为:【答案点睛】本题主要考查了椭圆离心率取值范围的求解,考查直线、圆与椭圆的综合运用,考查直线参数方程的运用,属于中档题.16、【答案解析】由图可知,当直线ykx在直线OA与x轴(不含它们)之间时,ykx与yf(x)的图像有两个不同交点,即方程有两个不相同的实根三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【答案解析】(1)根据菱形的特征和题中条件得
15、到平面,结合线面垂直的定义和判定定理即可证明;2建立空间直角坐标系,利用向量知识求解即可【题目详解】(1)证明:四边形是菱形, 平面平面,又是的中点,又平面(2)直线与平面所成的角等于直线与平面所成的角平面,直线与平面所成的角为,即因为,则在等腰直角三角形中,所以在中,由得,以为原点,分别以为轴建立空间直角坐标系则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出)【答案点睛】本题主要考查了线面垂直的判定以及二面角
16、的求解,属于中档题18、(1);(2)证明见解析.【答案解析】(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【题目详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,所以. (2)由为方程的两个实根,得,两式相减,可得, 因此,令,由,得, 则,构造函数.则,所以函数在上单调递增,故,即, 可知,故,命题得证.【答案点睛】本题考查利用导数
17、研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.19、(1)见解析(2)【答案解析】(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2) 过作交于,由为的中点,结合已知有平面.则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.【题目详解】(1)证明:平面,平面,,又四边形为正方形,.又、平面,且,平面.中,为的中点,.又、平面,平面.平面,平面平面.(2)解:过作交于,如图为的中点,.又平面,平面.,.所以,又、两两互相垂直,以、为坐标轴建立如图所示的空间直角坐标系.,设平面的法
18、向量,则,即.令,则,.平面的一个法向量为.二面角的余弦值为.【答案点睛】本题考查面面垂直的证明方法,考查了空间线线、线面、面面位置关系,考查利用向量法求二面角的方法,难度一般.20、(1)(2)特征值为或【答案解析】(1)先设矩阵,根据,按照运算规律,即可求出矩阵.(2)令矩阵的特征多项式等于,即可求出矩阵的特征值【题目详解】解:(1)设矩阵由题意,因为,所以 ,即所以,(2)矩阵的特征多项式,令,解得或,所以矩阵的特征值为1或【答案点睛】本题主要考查矩阵的乘法和矩阵的特征值,考查学生的划归与转化能力和运算求解能力.21、(1).(2)答案见解析【答案解析】(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【题目详解】(1),当且仅当时取等号,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度宠物照料保姆雇佣合同协议书
- 商铺转让服务合同
- 2025年度抚养权变更与财产分割调解合同模板
- 2025年度个人挖机租赁与施工验收服务合同
- 2025年度房东转租合同-科技园区房产租赁
- 2025年度医院医护人员岗位调整与劳动合同
- 2025年度互联网企业期权投资合作协议
- 2025年度影视作品宣传策划代理合同
- 二零二五年度数字经济领域聘用业务经理专属合同
- 2025年度原油出口退税及关税优惠合同
- 药品经营质量管理制度样本
- 有机农业概述课件
- 学校托幼机构肠道传染病消毒隔离及防控要求
- 生产加工型小微企业安全管理考试(含答案)
- A类《职业能力倾向测验》贵州省毕节地区2024年事业单位考试考前冲刺试卷含解析
- 沙子检测报告
- 2023-2024学年部编版必修下册 1-1 《子路、曾皙、冉有、公西华侍坐》教案2
- 无线电测向幻灯教材课件
- 第1课《我们的闲暇时光》课件
- 商务ktv项目计划书
- 脑血管造影术护理查房课件
评论
0/150
提交评论