版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学术讲座报告学 号: 姓 名: 报告题目: 指导教师: 所属学院: 成绩评定导师签名 桂林电子科技大学研究生院 年 月 日 学术讲座,它是研究生的一种 HYPERLINK /zuowen/xuexi/ t /a/201312/_blank 学习途径。利用课外学习时间,学校和学院给我们安排了一系列学术讲座,在我看来,旨在丰富研究生学期生活,积累专业知识,拓宽视野。这些讲座与我们专业知识紧密相关,但是却不单一,涉及不同课题观摩聆听名师讲座,名师神采飞扬,听者亦有心得。一千个读者的心中有一千个哈姆雷特。而面对着鲜活的教学对象,智慧的教师必然没有相同的课堂。听学术讲座过程中,不仅可以领略各行各业专家的
2、口才艺术,还可以开阔视野,学到课堂上学不到的知识。在进入研究生院一年多的时间里我参加了各种各样的学术讲座,我既了解到了各领域多层次的发展前沿,使自己能够跟上科学发展的步伐;同时充实了多方面的知识,提升了我们的理论水平;同时也看到了知名学者成功人士的人格魅力。而这也激发并且加强了我们对于所在学科领域的探索之心。在参加的学术讲座中我印象最深的是中国人民大学杜小勇教授“大数据时代的数据管理技术”这个讲座,因为他所讲的内容是我特别感兴趣的方面,拓宽了我的视野。该讲座的主要内容有大数据的定义、3V、管理技术等。大数据(big data)的3V大数据,或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目
3、前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据有3个V,一是大量化(Volume),数据量是持续快速增加的,从 TB级别,跃升到 PB 级别;二是多样化(Variety),数据类型多样化,结构化数据已被视为小菜一碟,图片、音频、视频等非结构化数据正以传统结构化数据增长的两倍速快速创建;三是快速化(Velocity),数据生成速度快,也就需要快速的处理能力,因此,产生了“1 秒定律”,就是说一般要在秒级时间范围内给出分析结果,时间太长就失去价值了,这个速度要求是大数据处理技术和传统的数据挖掘技术最大的区别。二、数据库管理技术目前数据库可分为关
4、系数据库和 noSQL数据库,根据数据应用的要求,再结合目前数据库的种类,所以目前数据库管理方式主要有以下 4 类。(1)面向操作型的关系数据库技术。首先,传统数据库厂商提供的基于行存储的关系数据库系统,如DB2、Oracle、SQL Server 等,以其高度的一致性、精确性、系统可恢复性,在事务处理方面仍然是核心引擎。其次,面向实时计算的内存数据库系统,如Hana、Timesten、Altibase 等通过把对数据并发控制、查询和恢复等操作控制在内存内部进行,所以获得了非常高的性能,在很多特定领域如电信、证券、网管等得到普遍应用。另外,以VoltDB、Clustrix 和NuoDB 为代表
5、的new SQL 宣称能够在保持ACDI 特性的同时提高了事务处理性能 50 倍 60 倍。(2)面向分析型的关系数据库技术。首先,TeraData 是数据仓库领域的领头羊,Teradata 在整体上是按Shared Nothing 架构体系进行组织的,定位就是大型数据仓库系统,支持较高的扩展性。其次,面向分析型应用,列存储数据库的研究形成了另一个重要的潮流。列存储数据库以其高效的压缩、更高的I/O 效率等特点,在分析型应用领域获得了比行存储数据库高得多的性能。如:MonetDB 和Vertica是一个典型的基于列存储技术的数据库系统。(3)面向操作型的noSQL 技术。有些操作型应用不受AC
6、ID 高度一致性约束,但对大数据处理需要处理的数据量非常大,对速度性能要求也非常高,这样就必须依靠大规模集群的并行处理能力来实现数据处理,弱一致性或最终一致性就可以了。这时,操作型noSQL 数据库的优点就可以发挥的淋漓尽致了。如Hbase 一天就可以有超过 200 亿个到达硬盘的读写操作,实现对大数据的处理。另外,noSQL 数据库是一个数据模型灵活、支持多样数据类型,如对图数据建模、存储和分析,其性能、扩展性是关系数据库无法比拟的。(4)面向分析型的noSQL 技术。面向分析型应用的noSQL 技术主要依赖于Hadoop分布式计算平台,Hadoop是一个分布式计算平台,以HDFS和Map
7、Reduce为用户提供系统底层细节透明的分布式基础架构。Hadoop 经典实践染技巧传统的数据库厂商 Microsoft,Oracle,SAS,IBM 等纷纷转向 Hadoop 的研究,如微软公司关闭 Dryad 系统,全力投入 Map Reduce 的研发,Oracle在 2011 年下半年发布 Big Plan 战略计划,全面进军大数据处理领域,IBM 则早已捷足先登,“沃森(Watson)”计算机就是基于Hadoop 技术开发的产物,同时IBM 发布了BigInsights计划,基于Hadoop,Netezza和SPSS(统计分析、数据挖掘软件)等技术和产品构建大数据分析处理的技术框架。
8、同时也涌现出一批新公司来研究Hadoop技术,如Cloudera、MapRKarmashpere等。讲座期间杜教授的饱满的科研激情不时地感染者我们在座的每一位听学者,杜教授幽默而又严谨的讲学风格也带动了我们大家的热情以及杜教授对专业技术领域的真知灼见也令我们在座的研究生由衷钦佩。此次讲座使我对大数据下数据管理的概念有了一定的认识并对其技术有了更深的理解,学到了大数据专业及其他相关方面更深层的理论知识和更前端的发展概况,理论水平得到了一定的提升,并提升了我们的专业技能,开阔了我们的视野,使我们受益颇多。书山有路勤为径,学海无涯苦作舟,虽然按照学校规定,我已经完成了听取有关学术报告和讲座的任务。但
9、在研二研三期间对学校组织的学术讲座和报告,我还会选择参加一些对自己专业有帮助的和自己感兴趣的讲座,不会停止学习探索的脚步,高度的责任感和使命感时刻提醒着我不断攀岩知识的高峰,充实自我,实现自己的理想。附录资料:不需要的可以自行删除C语言中如何获取时间?精度如何?1 使用time_t time( time_t * timer ) 精确到秒2 使用clock_t clock() 得到的是CPU时间精确到1/CLOCKS_PER_SEC秒3 计算时间差使用double difftime( time_t timer1, time_t timer0 )4 使用DWORD GetTickCount() 精
10、确到毫秒5 如果使用MFC的CTime类,可以用CTime:GetCurrentTime() 精确到秒6 要获取高精度时间,可以使用BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency)获取系统的计数器的频率BOOL QueryPerformanceCounter(LARGE_INTEGER *lpPerformanceCount)获取计数器的值然后用两次计数器的差除以Frequency就得到时间。7 Multimedia Timer FunctionsThe following functions are used with mu
11、ltimedia timers.timeBeginPeriod/timeEndPeriod/timeGetDevCaps/timeGetSystemTime/*/用标准C实现获取当前系统时间的函数一.time()函数time(&rawtime)函数获取当前时间距1970年1月1日的秒数,以秒计数单位,存于rawtime 中。#include time.hvoid main ()time_t rawtime;struct tm * timeinfo;time ( &rawtime );timeinfo = localtime ( &rawtime );printf ( 007The curren
12、t date/time is: %s, asctime (timeinfo) );exit(0);=#include - 必须的时间函数头文件time_t - 时间类型(time.h 定义是typedef long time_t; 追根溯源,time_t是long)struct tm - 时间结构,time.h 定义如下:int tm_sec;int tm_min;int tm_hour;int tm_mday;int tm_mon;int tm_year;int tm_wday;int tm_yday;int tm_isdst;time ( &rawtime ); - 获取时间,以秒计,从1
13、970年1月一日起算,存于rawtimelocaltime ( &rawtime ); - 转为当地时间,tm 时间结构asctime ()- 转为标准ASCII时间格式:星期 月 日 时:分:秒 年-二.clock()函数,用clock()函数,得到系统启动以后的毫秒级时间,然后除以CLOCKS_PER_SEC,就可以换成“秒”,标准c函数。clock_t clock ( void );#includeclock_t t = clock();long sec = t / CLOCKS_PER_SEC;他是记录时钟周期的,实现看来不会很精确,需要试验验证;-三.gettime(&t); 据说t
14、c2.0的time结构含有毫秒信息#include#includeint main(void)struct time t;gettime(&t);printf(The current time is: -:d:d.dn,t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund);return 0;time 是一个结构体, 其中成员函数 ti_hund 是毫秒。-四.GetTickCount(),这个是windows里面常用来计算程序运行时间的函数;DWORD dwStart = GetTickCount();/这里运行你的程序代码DWORD dwEnd = GetTic
15、kCount();则(dwEnd-dwStart)就是你的程序运行时间, 以毫秒为单位这个函数只精确到55ms,1个tick就是55ms。-五.timeGetTime()t,imeGetTime()基本等于GetTickCount(),但是精度更高DWORD dwStart = timeGetTime();/这里运行你的程序代码DWORD dwEnd = timeGetTime();则(dwEnd-dwStart)就是你的程序运行时间, 以毫秒为单位虽然返回的值单位应该是ms,但传说精度只有10ms。=/*Unix#unix时间相关,也是标准库的/*1.timegm函数只是将struct tm
16、结构转成time_t结构,不使用时区信息;time_t timegm(struct tm *tm);2.mktime使用时区信息time_t mktime(struct tm *tm);timelocal 函数是GNU扩展的与posix函数mktime相当time_t timelocal (struct tm *tm);3.gmtime函数只是将time_t结构转成struct tm结构,不使用时区信息;struct tm * gmtime(const time_t *clock);4.localtime使用时区信息struct tm * localtime(const time_t *clo
17、ck);1.time获取时间,stime设置时间time_t t;t = time(&t);2.stime其参数应该是GMT时间,根据本地时区设置为本地时间;int stime(time_t *tp)3.UTC=true 表示采用夏时制;4.文件的修改时间等信息全部采用GMT时间存放,不同的系统在得到修改时间后通过localtime转换成本地时间;5.设置时区推荐使用setup来设置;6.设置时区也可以先更变/etc/sysconfig/clock中的设置再将ln -fs /usr/share/zoneinfo/xxxx/xxx /etc/localtime 才能重效time_t只能表示68年
18、的范围,即mktime只能返回1970-2038这一段范围的time_t看看你的系统是否有time_t64,它能表示更大的时间范围/*windows#Window里面的一些不一样的/*一.CTime () 类VC编程一般使用CTime类 获得当前日期和时间CTime t = GetCurrentTime();SYSTEMTIME 结构包含毫秒信息typedef struct _SYSTEMTIME WORD wYear;WORD wMonth;WORD wDayOfWeek;WORD wDay;WORD wHour;WORD wMinute;WORD wSecond;WORD wMillise
19、conds; SYSTEMTIME, *PSYSTEMTIME;SYSTEMTIME t1;GetSystemTime(&t1)CTime curTime(t1);WORD ms = t1.wMilliseconds;SYSTEMTIME sysTm;:GetLocalTime(&sysTm);在time.h中的_strtime() /只能在windows中用char t11;_strtime(t);puts(t);/*获得当前日期和时间CTime tm=CTime:GetCurrentTime();CString str=tm.Format(%Y-%m-%d);在VC中,我们可以借助CTim
20、e时间类,获取系统当前日期,具体使用方法如下:CTime t = CTime:GetCurrentTime(); /获取系统日期,存储在t里面int d=t.GetDay(); /获得当前日期int y=t.GetYear(); /获取当前年份int m=t.GetMonth(); /获取当前月份int h=t.GetHour(); /获取当前为几时int mm=t.GetMinute(); /获取当前分钟int s=t.GetSecond(); /获取当前秒int w=t.GetDayOfWeek(); /获取星期几,注意1为星期天,7为星期六二.CTimeSpan类如果想计算两段时间的差值
21、,可以使用CTimeSpan类,具体使用方法如下:CTime t1( 1999, 3, 19, 22, 15, 0 );CTime t = CTime:GetCurrentTime();CTimeSpan span=t-t1; /计算当前系统时间与时间t1的间隔int iDay=span.GetDays(); /获取这段时间间隔共有多少天int iHour=span.GetTotalHours(); /获取总共有多少小时int iMin=span.GetTotalMinutes();/获取总共有多少分钟int iSec=span.GetTotalSeconds();/获取总共有多少秒-三._t
22、imeb()函数_timeb定义在SYSTIMEB.H,有四个fieldsdstflagmillitmtimetimezonevoid _ftime( struct _timeb *timeptr );struct _timeb timebuffer;_ftime( &timebuffer );取当前时间:文档讲可以到ms,有人测试,好象只能到16ms!四.设置计时器定义TIMER ID#define TIMERID_JISUANFANGSHI 2在适当的地方设置时钟,需要开始其作用的地方;SetTimer(TIMERID_JISUANFANGSHI,200,NULL);在不需要定时器的时候的
23、时候销毁掉时钟KillTimer(TIMERID_JISUANFANGSHI);对应VC程序的消息映射void CJisuan:OnTimer(UINT nIDEvent)switch(nIDEvent)-#如何设定当前系统时间-windowsSYSTEMTIME m_myLocalTime,*lpSystemTime;m_myLocalTime.wYear=2003;m_myLocalTime.wM;m_myLocalTime.wDay=1;m_myLocalTime.wHour=0;m_myLocalTime.wMinute=0;m_myLocalTime.wSec;m_myLocalTi
24、me.wMillisec;lpSystemTime=&m_myLocalTime;if( SetLocalTime(lpSystemTime) ) /此处换成 SetSystemTime( )也不行MessageBox(OK !);elseMessageBox(Error !);SYSTEMTIME m_myLocalTime,*lpSystemTime;m_myLocalTime.wYear=2003;m_myLocalTime.wM;m_myLocalTime.wDay=1;lpSystemTime=&m_myLocalTime;if( SetDate(lpSystemTime) ) /此
25、处换成 SetSystemTime( )也不行MessageBox(OK !);elseMessageBox(Error !);本文来自CSDN博客,转载请标明出处:HYPERLINK /khuang2008/archive/2008/12/09/3483274.aspx/khuang2008/archive/2008/12/09/3483274.aspx一种制作微秒级精度定时器的方法当使用定时器时,在很多情况下只用到毫秒级的时间间隔,所以只需用到下面的两种常用方式就满足要求了。一是用SetTimer函数建立一个定时器后,在程序中通过处理由定时器发送到线程消息队列中的WM_TIMER消息,而得
26、到定时的效果(退出程序时别忘了调用和SetTimer配对使用的KillTimer函数)。二是利用GetTickCount函数可以返回自计算机启动后的时间,通过两次调用GetTickCount函数,然后控制它们的差值来取得定时效果,此方式跟第一种方式一样,精度也是毫秒级的。用这两种方式取得的定时效果虽然在许多场合已经满足实际的要求,但由于它们的精度只有毫秒级的,而且在要求定时时间间隔小时,实际定时误差大。下面介绍一种能取得高精度定时的方法。在一些计算机硬件系统中,包含有高精度运行计数器(high-resolution performance counter),利用它可以获得高精度定时间隔,其精度
27、与CPU的时钟频率有关。采用这种方法的步骤如下:1、首先调用QueryPerformanceFrequency函数取得高精度运行计数器的频率f。单位是每秒多少次(n/s),此数一般很大。2、在需要定时的代码的两端分别调用QueryPerformanceCounter以取得高精度运行计数器的数值n1,n2。两次数值的差值通过f换算成时间间隔,t=(n2-n1)/f。下面举一个例子来演示这种方法的使用及它的精确度。在VC 6.0 下用MFC建立一个对话框工程,取名为HightTimer.在对话框面板中控件的布局如下图:其中包含两个静态文本框,两个编辑框和两个按纽。上面和下面位置的编辑框的ID分别为
28、IDC_E_TEST和IDC_E_ACTUAL,通过MFC ClassWizard添加的成员变量也分别对应为DWORD m_dwTest和DWORD m_dwAct. “退出”按纽的ID为IDOK,“开始测试”按纽ID为IDC_B_TEST,用MFC ClassWizard添加此按纽的单击消息处理函数如下:void CHightTimerDlg:OnBTest()/ TODO: Add your control notification handler code hereUpdateData(TRUE); /取输入的测试时间值到与编辑框相关联的成员变量m_dwTest中LARGE_INTEGE
29、R frequence;if(!QueryPerformanceFrequency( &frequence) /取高精度运行计数器的频率,若硬件不支持则返回FALSEMessageBox(Your computer hardware doesnt support the high-resolution performance counter,Not Support, MB_ICONEXCLAMATION | MB_OK);LARGE_INTEGER test, ret;test.QuadPart = frequence.QuadPart * m_dwTest / 1000000; /通过频率换
30、算微秒数到对应的数量(与CPU时钟有关),1秒=1000000微秒ret = MySleep( test ); /调用此函数开始延时,返回实际花销的数量m_dwAct = (DWORD)(1000000 * ret.QuadPart / frequence.QuadPart ); /换算到微秒数UpdateData(FALSE); /显示到对话框面板其中上面调用的MySleep函数如下:LARGE_INTEGER CHightTimerDlg:MySleep(LARGE_INTEGER Interval)/ 功能:执行实际的延时功能 / 参数:Interval 参数为需要执行的延时与时间有关的
31、数量 / 返回值:返回此函数执行后实际所用的时间有关的数量 / LARGE_INTEGER privious, current, Elapse;QueryPerformanceCounter( &privious );current = privious;while( current.QuadPart - privious.QuadPart Interval.QuadPart )QueryPerformanceCounter( t );Elapse.QuadPart = current.QuadPart - privious.QuadPart;return Elapse;注:别忘了在头文件中为
32、此函数添加函数声明。至此,可以编译和执行此工程了,结果如上图所示。在本人所用的机上(奔腾366, 64M内存)测试,当测试时间超过3微秒时,准确度已经非常高了,此时机器执行本身延时函数代码的时间对需要延时的时间影响很小了。上面的函数由于演示测试的需要,没有在函数级封装,下面给出的函数基本上可以以全局函数的形式照搬到别的程序中。BOOL MySleep(DWORD dwInterval)/ 功能:执行微秒级的延时功能 / 参数:Interval 参数为需要的延时数(单位:微秒) / 返回值:若计算机硬件不支持此功能,返回FALSE,若函数执行成功,返回TRUE / BOOL bNormal =
33、TRUE;LARGE_INTEGER frequence, privious, current, interval;if(!QueryPerformanceFrequency( &frequence):MessageBox(NULL, Your computer hardware doesnt support the high-resolution performance counter,Not Support, MB_ICONEXCLAMATION | MB_OK); /或其它的提示信息return FALSE;interval.QuadPart = frequence.QuadPart *
34、 dwInterval / 1000000;bNormal = bNormal & QueryPerformanceCounter( &privious );current = privious;while( current.QuadPart - privious.QuadPart interval.QuadPart )bNormal = bNormal & QueryPerformanceCounter( t );return bNormal;需要指出的是,由于在此函数中的代码很多,机器在执行这些代码所花费的时间也很长,所以在需要几个微秒的延时时,会影响精度。实际上,读者在熟悉这种方法后,只
35、要使用QueryPerformanceFrequency和QueryPerformanceCounter这两个函数就能按实际需要写出自己的延时代码了。使用CPU时间戳进行高精度计时对关注性能的程序开发人员而言,一个好的计时部件既是益友,也是良师。计时器既可以作为程序组件帮助程序员精确的控制程序进程,又是一件有力的调试武器,在有经验的程序员手里可以尽快的确定程序的性能瓶颈,或者对不同的算法作出有说服力的性能比较。在Windows平台下,常用的计时器有两种,一种是timeGetTime多媒体计时器,它可以提供毫秒级的计时。但这个精度对很多应用场合而言还是太粗糙了。另一种是QueryPerforma
36、nceCount计数器,随系统的不同可以提供微秒级的计数。对于实时图形处理、多媒体数据流处理、或者实时系统构造的程序员,善用QueryPerformanceCount/QueryPerformanceFrequency是一项基本功。本文要介绍的,是另一种直接利用Pentium CPU内部时间戳进行计时的高精度计时手段。以下讨论主要得益于Windows图形编程一书,第15页17页,有兴趣的读者可以直接参考该书。关于RDTSC指令的详细讨论,可以参考Intel产品手册。本文仅仅作抛砖之用。在Intel Pentium以上级别的CPU中,有一个称为“时间戳(Time Stamp)”的部件,它以64位
37、无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述两种方法所无法比拟的。在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read Time Stamp Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C+语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用。像这样:inline unsigned _int64 GetCycleCount() _asm RDTSC 但是不行,因为RDTSC
38、不被C+的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31,如下:inline unsigned _int64 GetCycleCount() _asm _emit 0 x0F _asm _emit 0 x31 以后在需要计数器的场合,可以像使用普通的Win32 API一样,调用两次GetCycleCount函数,比较两个返回值的差,像这样: unsigned long t; t = (unsigned long)GetCycleCount(); /Do Something time-intensive . t -= (unsigned long)G
39、etCycleCount(); Windows图形编程第15页编写了一个类,把这个计数器封装起来。有兴趣的读者可以去参考那个类的代码。作者为了更精确的定时,做了一点小小的改进,把执行RDTSC指令的时间,通过连续两次调用GetCycleCount函数计算出来并保存了起来,以后每次计时结束后,都从实际得到的计数中减掉这一小段时间,以得到更准确的计时数字。但我个人觉得这一点点改进意义不大。在我的机器上实测,这条指令大概花掉了几十到100多个周期,在Celeron 800MHz的机器上,这不过是十分之一微秒的时间。对大多数应用来说,这点时间完全可以忽略不计;而对那些确实要精确到纳秒数量级的应用来说,
40、这个补偿也过于粗糙了。 这个方法的优点是: 1.高精度。可以直接达到纳秒级的计时精度(在1GHz的CPU上每个时钟周期就是一纳秒),这是其他计时方法所难以企及的。 2.成本低。timeGetTime 函数需要链接多媒体库winmm.lib,QueryPerformance* 函数根据MSDN的说明,需要硬件的支持(虽然我还没有见过不支持的机器)和KERNEL库的支持,所以二者都只能在Windows平台下使用(关于DOS平台下的高精度计时问题,可以参考图形程序开发人员指南,里面有关于控制定时器8253的详细说明)。但RDTSC指令是一条CPU指令,凡是i386平台下Pentium以上的机器均支持
41、,甚至没有平台的限制(我相信i386版本UNIX和Linux下这个方法同样适用,但没有条件试验),而且函数调用的开销是最小的。 3.具有和CPU主频直接对应的速率关系。一个计数相当于1/(CPU主频Hz数)秒,这样只要知道了CPU的主频,可以直接计算出时间。这和QueryPerformanceCount不同,后者需要通过QueryPerformanceFrequency获取当前计数器每秒的计数次数才能换算成时间。 这个方法的缺点是: 1.现有的C/C+编译器多数不直接支持使用RDTSC指令,需要用直接嵌入机器码的方式编程,比较麻烦。 2.数据抖动比较厉害。其实对任何计量手段而言,精度和稳定性永远是一对矛盾。如果用低精度的timeGetTime来计时,基本上每次计时的结果都是相同的;而RDTSC指令每次结果都不一样,经常有几百甚至上千的差距。这是这种方法高精度本身固有的矛盾。 关于这个方法计时的最大长度,我们可以简单的用下列公式计算: 自CPU上电以来的秒数 = RDTSC读出的周期数 / CPU主频速率(Hz) 64位无符号整数所能表达的最大数字是1.81019,在我的Celeron 800上可以计时大约700年(书中说可以在200MHz的Pentium上计时117年,这个数字不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度会展中心场地租赁及配套服务补充协议3篇
- 2025年个人承包文化创意产业合同(创意设计)2篇
- 2024版支付担保合同范本
- 2024生物质锅炉燃料供应及销售合同3篇
- 2024石膏板供应商战略合作采购合同模板3篇
- 2025年度专业厨师团队厨房服务承包协议3篇
- 2024绿化土地租赁与生态补偿及绿化管理合同3篇
- 2024铁路货运车辆安全检测及维护服务合同实施细则3篇
- 多媒体应用基础知到智慧树章节测试课后答案2024年秋安徽大学
- 2025年充电桩充电站运营维护及升级改造合同3篇
- 回收二手机免责协议书模板
- DL∕T 5362-2018 水工沥青混凝土试验规程
- 可下载打印的公司章程
- 采购控制程序
- 菌草技术及产业化应用课件
- GB∕T 14527-2021 复合阻尼隔振器和复合阻尼器
- 隧道二衬、仰拱施工方案
- 颤病(帕金森病)中医护理常规
- 果胶项目商业计划书(模板范本)
- 旋挖钻成孔掏渣筒沉渣处理施工工艺
- 安全资料目录清单
评论
0/150
提交评论