版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设复数满足,则的共轭复数的虚部为( )A1B-1CD2已知复数,则( )A1BCD23是虚数单位,复数的共轭复数 ( )ABCD4已知定义在上的函数的导函数为,且,若存在实数,使不等
2、式对于任意恒成立,则实数的取值范围是()ABCD5阅读如图所示的程序框图,运行相应的程序,若输入的值为1,则输出的值为( )AB2C0D无法判断6已知变量与正相关,且由观测数据算得样本平均数,则由该观测的数据算得的线性回归方程可能是( )ABCD7若是离散型随机变量,又已知,则的值为( )ABC3D18汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A消耗1升汽油,乙车最多可行驶5千米B以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C甲车以80千米/小时的速度行驶1小时,消耗10升汽油D某城市机动车最高限
3、速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油9欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的( )A第一象限B第二象限C第三象限D第四象限10设A,B,C是三个事件,给出下列四个事件:()A,B,C中至少有一个发生;()A,B,C中最多有一个发生;()A,B,C中至少有两个发生;()A,B,C最多有两个发生;其中相互为对立事件的是( )A和B和C和D和11函数在上单调递减,且是偶函数,若 ,则 的取值范围是()A(2,+
4、)B(,1)(2,+)C(1,2)D(,1)12若对任意实数,有,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13为了了解学校(共三个年级)的数学学习情况,教导处计算高一、高二、高三三个年级的平均成绩分别为,并进行数据分析,其中三个年级数学平均成绩的标准差为_.14计算:_15将参数方程(为参数),转化成普通方程为_16已知直线与圆相交于A、B两点,则AOB大小为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,曲线在点处的切线平分圆C:的周长.(1)求a的值;(2)讨论函数的图象与直线的交点个数.18(12分)设,函数.(1)若,极大值;
5、(2)若无零点,求实数的取值范围;(3)若有两个相异零点,求证:.19(12分)时下,租车自驾游已经比较流行了某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算)甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.20(12分)的内角的对边分别为已知.(1)求角和边长;(2)设为边上一点,且,求的面积.21(12分)已知F(x),x(1,)(1)求F(x)的单调区间;(2)求函数F(x)在
6、1,5上的最值22(10分)已知曲线C的参数方程为(a参数),以直角坐标系的原点为极点,x正半轴为极轴建立极坐标系.()求曲线C的极坐标方程;()若直线l极坐标方程为,求曲线C上的点到直线l最大距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求解出的共轭复数,然后直接判断出的虚部即可.【详解】因为,所以,所以的虚部为.故选:A.【点睛】本题考查共轭复数的概念以及复数的实虚部的认识,难度较易.复数的实部为 ,虚部为.2、C【解析】直接由复数商的模等于模的商求解【详解】,故选:C【点睛】本题考查复数模的求法,复数模
7、的性质,属于容易题3、B【解析】利用复数代数形式的乘法运算化简z,再由共轭复数的概念得到答案.【详解】因为,所以,故选B.【点睛】该题考查的是有关复数的共轭复数问题,涉及到的知识点有复数的除法运算法则,复数的乘法运算法则,以及共轭复数,正确解题的关键是灵活掌握复数的运算法则.4、C【解析】对函数求导,分别求出和的值,得到,利用导数得函数的最小值为1,把存在实数,使不等式对于任意恒成立的问题转化为对于任意恒成立,分离参数,分类讨论大于零,等于零,小于零的情况,从而得到的取值范围。【详解】由题可得,分别把和代入与中得到 ,解得:; ,即当时,则在上单调递减;当时,则在上单调递增; 要存在实数,使不
8、等式对于任意恒成立,则不等式对于任意恒成立,即不等式对于任意恒成立;(1)当时,显然不等式不成立,舍去;(2)当时,不等式对于任意恒成立转化为对于任意恒成立,即,解得:;(3)当时,不等式对于任意恒成立转化为对于任意恒成立,即,解得:;综述所述,实数的取值范围是故答案选C【点睛】本题考查函数解析式的求法,利用导数求函数最小值,分类参数法,考查学生转化的思想,分类讨论的能力,属于中档题。5、B【解析】由条件结构,输入的x值小于0,执行yx,输出y,等于0,执行y0,输出y,大于0,执行y1x,输出y,由x10,执行y1x得解【详解】因为输入的x值为1大于0,所以执行y1x1,输出1故选:B【点睛
9、】本题考查了程序框图中的条件结构,条件结构的特点是,算法的流程根据条件是否成立有不同的流向,算法不循环执行6、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A考点:线性回归直线.7、D【解析】分析:由期望公式和方差公式列出的关系式,然后变形求解详解:,随机变量的值只能为,解得或,故选D点睛:本题考查离散型随机变量的期望与方差,解题关键是确定随机变量只能取两个值,从而再根据其期望与方差公式列出方程组,以便求解8、D【解析】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,当速度大于40km/h时,消耗1升汽油,
10、乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,用丙车比用乙车更省油,故D正确故选D考点:1、数学建模能力;2、阅读能力及化归思想.9、B【解析】 ,对应点 ,位于第二象限,选B.10、B【解析】利用互斥事件、对立
11、事件的定义直接求解【详解】解:,是三个事件,给出下列四个事件:(),中至少有一个发生;(),中最多有一个发生;(),中至少有两个发生(),最多有两个发生;在中,和能同时发生,不是互斥事件,故中的两个事件不能相互为对立事件;在中,和既不能同时发生,也不能同时不发生,故中的两个事件相互为对立事件;在中,和能同时发生,不是互斥事件,故中的两个事件不能相互为对立事件;在中,和能同时发生,不是互斥事件,故中的两个事件不能相互为对立事件故选:【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题11、B【解析】根据题意分析的图像关于直线对称,即可得到的单
12、调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数 满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。12、B【解析】分析:根据,按二项式定理展开,和已知条件作对比,求出的值,即可求得答案.详解:,且 ,.故选:B.点睛:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据方差公式计算方差,然后再得标准差【详解】三个数的平均值
13、为115,方差为,标准差为故答案为:【点睛】本题考查标准差,注意到方差是标准差的平方,因此可先计算方差方差公式为:数据的方差为14、【解析】将变为,然后利用组合数性质即可计算出所求代数式的值.【详解】,.故答案为:.【点睛】本题考查组合数的计算,利用组合数的性质进行计算是解题的关键,考查计算能力,属于中等题.15、【解析】将参数方程变形为,两式平方再相减可得出曲线的普通方程.【详解】将参数方程变形为,两等式平方得,上述两个等式相减得,因此,所求普通方程为,故答案为:.【点睛】本题考查参数方程化为普通方程,在消参中,常用平方消元法与加减消元法,考查计算能力,属于中等题.16、60【解析】由垂径定
14、理求得相交弦长,然后在等腰三角形中求解【详解】圆心到直线的距离为,圆心半径为,为等边三角形,【点睛】本题考查直线与圆相交弦长问题求直线与圆相交弦长一般用垂径定理求解,即求出弦心距,则有三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)求得曲线在点处的切线,根据题意可知圆C的圆心在此切线上,可得a的值.(2)根据得出极值,结合单调区间和函数图像,分类讨论的值和交点个数。【详解】(1),所以曲线在点处的切线方程为由切线平分圆C:的周长可知圆心在切线上, (2)由(1)知,令,解得或当或时,故在,上为增函数;当时,故在上为减函数. 由此可知,在处
15、取得极大值在处取得极小值大致图像如图:当或时,的图象与直线有一个交点当或时,的图象与直线有两个交点当时,的图象与直线有3个交点.【点睛】本题考查利用导数求切线,研究单调区间,考查数形结合思想求解交点个数问题,属于基础题.18、(1);(2);(3)证明见解析.【解析】分析:(1),根据导数的符号可知的极大值为;(2) ,就分类讨论即可;(3)根据可以得到,因此原不等式的证明可化为,可用导数证明该不等式.详解:(1)当时,当时,当时,故的极大值为.(2),若时,则,是区间上的增函数,函数在区间有唯一零点;若,有唯一零点;若,令,得,在区间上,函数是增函数;在区间上,函数是减函数;故在区间上,的极
16、大值为,由于无零点,须使,解得,故所求实数的取值范围是(3)由已知得, 所以,故等价于即不妨设,令,则,在上为单调增函数,所以即,也就是,故原不等式成立点睛: 导数背景下的函数零点个数问题,应该根据单调性和零点存在定理来说明而要证明零点满足的不等式,则需要根据零点满足的等式构建新的目标等式,从而把要求证的不等式转化为易证的不等式19、(1);(2)见解析【解析】(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.
17、【详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况甲租天以上,乙租不超过天的概率为:甲租天,乙租天的概率为:甲所付租车费比乙多的概率为:(2)甲、乙两人所付的租车费之和所有可能的取值为:则;的分布列为:数学期望【点睛】本题考查独立事件概率的求解、离散型随机变量的分布列与数学期望的求解,涉及到和事件、积事件概率的求解,考查学生的运算和求解能力,属于常考题型.20、(1),;(2).【解析】试题分析:(1)先根据同角的三角函数的关系求出 从而可得的值,再根据余弦定理列方程即可求出边长的值;(2)先根据余弦定理求出,求出的长,可得,从而得到,进而可得结果.试
18、题解析:(1),由余弦定理可得,即,即,解得(舍去)或,故.(2),.21、(1)单调递增区间为(1,0)和(4,),单调递减区间为(0,4);(2)最大值为,最小值为.【解析】(1)由微积分基本定理可得出F(x)的表达式,进而求出其导数F(x),令F(x)0,F(x)0,即x24x0,得1x4;由F(x)0,即x24x0,得0 x4,所以F(x)的单调递增区间为(1,0)和(4,),单调递减区间为(0,4)(2)由(1)知F(x)在1,4上递减,在4,5上递增因为F(1)2,F(4)43242,F(5)532526,所以F(x)在1,5上的最大值为,最小值为.【点睛】本题考察微积分定理以及利用导数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年企业人力资源绩效评估与激励服务协议2篇
- 个人住宅装修协议2024
- 2025年度速录行业联合市场拓展与资源共享协议3篇
- 二零二五年度餐厅特色菜品研发与推广协议3篇
- 2025年度智能电网建设履约担保协议范本4篇
- 2025年度新能源电池产品总代理权授权协议4篇
- 二零二四年外资企业股权转让与合资公司运营管理合同3篇
- 全新二零二五年度智能家居研发与销售合同3篇
- 2025年蔬菜水果电商代运营合作协议模板3篇
- 专业技术机房设备买卖协议规范文本2024版版B版
- 2024高考复习必背英语词汇3500单词
- 消防控制室值班服务人员培训方案
- 《贵州旅游介绍》课件2
- 2024年中职单招(护理)专业综合知识考试题库(含答案)
- 无人机应用平台实施方案
- 挪用公款还款协议书范本
- 事业单位工作人员年度考核登记表(医生个人总结)
- 盾构隧道施工数字化与智能化系统集成
- 【企业盈利能力探析文献综述2400字】
- 2019年医养结合项目商业计划书
- 2023年店铺工程主管年终业务工作总结
评论
0/150
提交评论