江西省南城县第一中学2021-2022学年高二数学第二学期期末经典试题含解析_第1页
江西省南城县第一中学2021-2022学年高二数学第二学期期末经典试题含解析_第2页
江西省南城县第一中学2021-2022学年高二数学第二学期期末经典试题含解析_第3页
江西省南城县第一中学2021-2022学年高二数学第二学期期末经典试题含解析_第4页
江西省南城县第一中学2021-2022学年高二数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为虚数单位,则复数的虚部是AB1CD2已知双曲线的左、右焦点分别为、,、分别是双曲线左、右两支上关于坐标原点对称的两点,且直线的斜率为.、分别为、的中点,若原点在以线段为直径的

2、圆上,则双曲线的离心率为( )ABCD3下面几种推理过程是演绎推理的是 ()A某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人B两条直线平行,同旁内角互补,如果A与B是两条平行直线的同旁内角,则AB180C由平面三角形的性质,推测空间四边形的性质D在数列an中,a11,an12 (an11an-1)(n2),由此归纳出a4已知抛物线,过其焦点的直线交抛物线于两点,若,则的面积(为坐标原点)为( )ABCD5已知数列满足,设为数列的前项之和,则( )ABCD6若函数ya|x|(a0,且a1)的值域为y|00,且a1)的值域为y|0y1,得0a1.yloga|x

3、|在上为单调递减,排除B,C,D又因为yloga|x|为偶函数,函数图象关于y轴对称,故A正确.故选A.7、A【解析】首先解这两个不等式,然后判断由题设能不能推出结论和由结论能不能推出题设,进而可以判断出正确的选项.【详解】, ,显然由题设能推出结论,但是由结论不能推出题设,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分条件、必要条件的判断,解决本问题的关键是正确求出不等式的解集.8、C【解析】试题分析:,在上单调递增,上单调递减,又,不等式只有两个整数解,即实数的取值范围是故选C【考点】本题主要考查导数的运用9、C【解析】根据图象:分,四种情况讨论的单调性.【详解】根据图

4、象:当,所以递增,当,所以递减,当,所以递减,当,所以递增,故选:C【点睛】本题主要考查导数与函数的图象间的关系,还考查了数形结合的思想和理解辨析的能力,属于常考题.10、A【解析】分析:先证明充分性,两边同时平方即可,再证明必要性,取特值,从而判断出结果。详解:充分性:将两边平方可得:化简可得:则,故满足充分性必要性:,当时,故不满足必要性条件则是的充分而不必要条件故选点睛:本题考查了充分条件与必要条件的判定,可以根据其定义进行判断,在必要性的判定时采用了取特值的方法,这里也要熟练不等式的运用11、A【解析】首先根据三角形内角和为,即可算出角的正弦、余弦值,再根据正弦定理即可算出角B【详解】

5、在ABC中有,所以,所以,又因为,所以,所以,因为,所以由正弦定理得,因为,所以。所以选择A【点睛】本题主要考查了解三角形的问题,在解决此类问题时常用到:1、三角形的内角和为。2、正弦定理。3、余弦定理等。属于中等题。12、C【解析】由纯虚数的定义和三角恒等式可求得,根据二倍角公式求得;根据复数的几何意义可求得结果.【详解】为纯虚数,即,对应点的坐标为,位于第二象限.则的共轭复数在复平面内对应的点位于第三象限故选:.【点睛】本题考查复数对应点的坐标的问题的求解,涉及到同角三角函数值的求解、二倍角公式的应用、复数的几何意义等知识.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根

6、据古典概型概率公式结合组合知识可得结论;根据二项分布的方差公式可得结果;根据条件概率进行计算可得到第二次再次取到红球的概率;根据对立事件的概率公式可得结果.【详解】从中任取3个球,恰有一个白球的概率是,故正确;从中有放回的取球次,每次任取一球,取到红球次数,其方差为,故正确;从中不放回的取球次,每次任取一球,则在第一次取到红球后,此时袋中还有个红球个白球,则第二次再次取到红球的概率为,故错误;从中有放回的取球3次,每次任取一球,每次取到红球的概率为,至少有一次取到红球的概率为,故正确,故答案为.【点睛】本题主要考查古典概型概率公式、对立事件及独立事件的概率及分二项分布与条件概率,意在考查综合应

7、用所学知识解决问题的能力,属于中档题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.14、1【解析】解:A、B、C三层,个体数之比为5:3:2又有总体中每个个体被抽到的概率相等,分层抽样应从C中抽取100=1故答案为115、4【解析】分析:按照循环体执行,直到跳出循环详解:第一次循环后:S=7,n=6;第二次循环后:S=13,n=5;第三次循环后:S=18,n=4;

8、不成立,结束循环所以输出值为4点睛:程序题目在分析的时候一定要注意结束条件,逐次执行程序即可.16、【解析】分析:由复数的几何意义解得点的轨迹为以为端点的线段,表示线段上的点到的距离,根据数形结合思想,结合点到直线距离公式可得结果. 详解:因为复数满足,在复平面内设复数对应的点为,则到的距离之和为,所以点的轨迹为以为端点的线段,表示线段上的点到的距离,可得最小距离是与的距离,等于;最大距离是与的距离,等于;即的取值范围是,故答案为.点睛:本题考查复数的模,复数的几何意义,是基础题. 复数的模的几何意义是复平面内两点间的距离,所以若,则表示点与点的距离,表示以为圆心,以为半径的圆.三、解答题:共

9、70分。解答应写出文字说明、证明过程或演算步骤。17、 ()答案见解析;(),证明见解析.【解析】分析:(1)利用公式,将已知转换成关于的递推公式,计算,在通过分子和分母的规律猜想出.(2)根据,结合通项公式的累乘法求出.再运用求和证明(1)的猜想.详解:()由,得,猜想.()证明:因为,所以,-得,所以.化简得,所以,把上面各式相乘得,所以,.点睛:数列问题注意两个方面的问题:(1)的特殊性;(2)时,消去,如,可以计算;消去,如,可以计算.18、(1);(2)选择第一种抽奖方案更合算.【解析】(1)选择方案一,利用积事件的概率公式计算出两位顾客均享受到免单的概率;(2)选择方案一,计算所付

10、款金额的分布列和数学期望值,选择方案二,计算所付款金额的数学期望值,比较得出结论.【详解】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件,则,所以两位顾客均享受到免单的概率为;(2)若选择方案一,设付款金额为元,则可能的取值为、.,.故的分布列为,所以(元).若选择方案二,设摸到红球的个数为,付款金额为,则,由已知可得,故,所以(元).因为,所以该顾客选择第一种抽奖方案更合算.【点睛】本题考查独立事件的概率乘法公式,以及离散型随机变量分布列与数学期望,同时也考查了二项分布的数学期望与数学期望的性质,解题时要明确随机变量所满足的分布列类型,考查计算能力,属于中等

11、题.19、(1)30;(2)65;(3)51.【解析】(1)先选两名男选手,再选两名女选手,乘法原理得到答案.(2)用总的选择方法减去全是女选手的方法得到答案.(3)分为有男队长和没有男队长两种情况,相加得到答案.【详解】(1)第一步:选名男运动员,有种选法.第二步:选名女运动员,有种选法.共有 (种)选法. (2)至少有名男选手”的反面为“全是女选手”.从人中任选人,有种选法,其中全是女选手的选法有种.所以“至少有名女运动员”的选法有 (种). (3)当有男队长时,其他人选法任意,共有种选法.不选男队长时,必选女队长,共有种选法,其中不含男选手的选法有种,所以不选男队长时,共有种选法.故既要

12、有队长,又要有男选手的选法有 (种) .【点睛】本题考查了排列组合问题的计算,意在考查学生的计算能力和解决问题的能力.20、(1)的普通方程为:,的直角坐标方程为:(2)的最小值为,此时的直角坐标为【解析】(1)直接利用参数方程和极坐标方程公式得到答案.(2)最小值为点到直线的距离,,再根据三角函数求最值.【详解】(1):,化简:.: ,由,化简可得:.所以的普通方程为:,的直角坐标方程为:;(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值,即为到的距离的最小值,利用三角函数性质求得最小值.,其中,当且仅当,时,取得最小值,最小值为,此时的直角坐标为.【点睛】本题考查了参数方程,极坐标方程,利用三角函数求最小值可以简化运算.21、(1),(2)没有90%的把握【解析】分析:(1)由题意知 且,得,用每个矩形的中点值乘以面积求和可得平均值;(2)由题知数据完善22列联表,计算,查表下结论即可.详解:(1)由题意知 且解得 所求平均数为:(元) (2)根据频率分布直方图得到如下22列联表: 高消费群非高消费群合计男153550女104050合计2575100根据上表数据代入公式可得所以没有90%的把握认为“高消费群”与性别有关点睛:(1)本题主要考查频率分布直方图,考查独立性检验,意在考查学生对统计概率的基础

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论