版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数fx在R上可导,且fx=A-2B2C4D-42函数在区间上的最大值和最小值分别为()A25,-2B50,-2C50,14D50,-143 “”是“方程所表示的曲线是椭圆”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4由0,1,2,3,4,5这六个数字可以组成没有重复数字且能被5整除的5位数的个数是( )A144B192C216D2405已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是()ABCD6已知
3、函数,且,其中是的导函数,则( )ABCD7函数是周期为4的偶函数,当时,,则不等式在上的解集是 ( )ABCD8设,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件9中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这5年,高铁运营里程与年价正相关C2018年高铁运营里程比201
4、4年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列10已知双曲线的一个焦点为,一条渐近线的斜率为,则该双曲线的方程为( )ABCD11甲、乙等人在南沙聚会后在天后宫沙滩排成一排拍照留念,甲和乙必须相邻的排法有( )A种B种C种D种12已知全集,集合,则图中阴影部分表示的集合为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知随机变量服从正态分布XN(2,2),若P(Xa)=0.32,则P(aX4-a)14已知函数,对任意,都有,则_15已知向量.若与共线,则在方向上的投影为 _.16函数在上的最大值是_三、解答题:共70分。解答应写
5、出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.18(12分)小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,让同学们自由选择其中一道题作答,选题人数如下表所示,但因不小心将部分数据损毁,只是记得女生选择几何题的频率是.几何题代数题合计男同学22830女同学合计(1)根据题目信息补全上表;(2)能否根据这个调查数据判断有的把握认为选代数题还是几何题与性别有关?参考数
6、据和公式:0.150.100.050.0250.0100.0052.0722.7063.8415.0246.6357.879,其中.19(12分)某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.(1)根据图中数据,求出月销售额在小组内的频率.根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推
7、销员来自同一个小组的概率.20(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)奇数项的二项式系数和;(3)求系数绝对值最大的项.21(12分)在平面直角坐标系xOy中,直线C1的参数方程为(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2(1+sin2)2,点M的极坐标为(,)(1)求点M的直角坐标和C2的直角坐标方程;(2)已知直线C1与曲线C2相交于A,B两点,设线段AB的中点为N,求|MN|的值22(10分)已知函数(1)若在区间上是单调递增函数,求实数的取值范围;(2)若在处有极值10,求的值;(3)若对任意的,有恒成立,求实数的取值范
8、围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求导后代入x=1可得关于f1【详解】由fx=令x=1,则f1本题正确选项:A【点睛】本题考查导数值的求解,关键是能够根据导数运算法则得到导函数的解析式,属于基础题.2、B【解析】求导,分析出函数的单调性,进而求出函数的极值和两端点的函数值,可得函数f(x)2x3+9x22在区间4,2上的最大值和最小值【详解】函数f(x)2x3+9x22,f(x)6x2+18x,当x4,3),或x(0,2时,f(x)0,函数为增函数;当x(3,0)时,f(x)0,函数为减函数;由f(4
9、)14,f(3)25,f(0)2,f(2)50,故函数f(x)2x3+9x22在区间4,2上的最大值和最小值分别为50,2,故选:B【点睛】本题考查的知识点是利用导数求闭区间上的函数的最值及函数的单调性问题,属于中档题3、B【解析】分析:根据椭圆的方程以及充分条件和必要条件的定义进行判断即可详解:若方程表示的曲线为椭圆,则,且,反之,“”不能得到方程所表示的曲线是椭圆”,如 故“”是“方程所表示的曲线是椭圆”的必要不充分条件.选B.点睛:本题主要考查充分条件和必要条件的判断,属基础题.4、C【解析】由题意可得,满足条件的五位数,个位数字只能是0或5,分别求出个位数字是0或5时,所包含的情况,即
10、可得到结果.【详解】因为由0,1,2,3,4,5组成的没有重复数字且能被5整除的5位数,个位数字只能是0或5,万位不能是0;当个位数字是0时,共有种可能;当个位数字是5时,共有种情况;因此,由0,1,2,3,4,5这六个数字可以组成没有重复数字且能被5整除的5位数的个数是个.故选C【点睛】本题主要考查排列的问题,根据特殊问题优先考虑的原则,即可求解,属于常考题型.5、A【解析】解:由题意可知f(x)在0,+)上单调递增,值域为m,+),对于任意sR,且s0,均存在唯一实数t,使得f(s)f(t),且st,f(x)在(,0)上是减函数,值域为(m,+),a0,且b+1m,即b1m|f(x)|f(
11、)有4个不相等的实数根,0f()m,又m1,0m,即0(1)mm,4a2,则a的取值范围是(4,2),故选A点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.6、A【解析】分析:求出原函数的导函数,然后由f(x)=2f(x),求出sinx与cosx的关系,同时求出tanx的值,化简要求解的分式,最后把tanx的值代入即可详解:因为函数f(x)=sinx-cosx,
12、所以f(x)=cosx+sinx,由f(x)=2f(x),得:cosx+sinx=2sinx-2cosx,即3cosx=sinx,所以.所以=.故答案为A.点睛:(1)本题主要考查求导和三角函数化简求值,意在考查学生对这些知识的掌握水平和分析转化计算能力.(2)解答本题的关键是=.这里利用了“1”的变式,1=.7、C【解析】若,则此时是偶函数, 即 若 ,则 函数的周期是4, 即 ,作出函数在 上图象如图,若,则不等式 等价为 ,此时 若 ,则不等式等价为 ,此时 ,综上不等式 在 上的解集为故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本
13、题的关键8、A【解析】首先解这两个不等式,然后判断由题设能不能推出结论和由结论能不能推出题设,进而可以判断出正确的选项.【详解】, ,显然由题设能推出结论,但是由结论不能推出题设,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分条件、必要条件的判断,解决本问题的关键是正确求出不等式的解集.9、D【解析】由折线图逐项分析即可求解【详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题10、C【解析】根据双曲线一个焦点可以求出,再根据一条渐近线的斜率为,可求出的关系,
14、最后联立,解方程求出,求出方程即可.【详解】因为双曲线一个焦点的坐标为,所以,一条渐近线的斜率为,所以有,而,所以,因此有.故选:C【点睛】本题考查了求双曲线方程,考查了双曲线的渐近线方程,考查了数学运算能力.11、B【解析】由题意利用捆绑法求解,甲、乙两人必须相邻的方法数为种选12、D【解析】分析:先求出A集合,然后由图中阴影可知在集合A中出去A,B的交集部分即可.详解:由题得:所以故有题中阴影部分可知:阴影部分表示的集合为故选D.点睛:考查集合的交集和补集,对定义的理解是解题关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.36【解析】P(X4-a)=0.32,P
15、(aX4-a)=1-2P(Xa)=1-20.32=0.36.14、20【解析】分析:令,知,从而可得,进而可得结果.详解:令,知,故答案为.点睛:本题主要考查赋值法求函数的解析式,令,求出的值,从而求出函数解析式,是解题的关键,属于中档题.15、【解析】利用共线向量的坐标表示求出参数,再依据投影的概念求出结果即可【详解】.又与共线,在方向上的投影为.【点睛】本题主要考查共线向量的坐标表示以及向量投影的概念,注意投影是个数量16、【解析】求出导函数,求解极值点,然后判断函数的单调性求解函数的最大值即可【详解】函数,令,解得因为,函数在上单调递增,在单调递减;时,取得最大值,故答案为【点睛】本题考
16、查函数的导数的应用,熟练掌握利用导数研究函数的单调性、极值与最值是解题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、().().【解析】详解:()当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.()因为,所以.由题意知对,即,因为,所以,解得.【点睛】 绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:绝对值定义法;平方法;零点区域法 不等式的恒成立可用分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围这种方法本质也是求最值一般有: 为参数)恒
17、成立 为参数)恒成立 18、(1)见解析;(2) 有97.5%的把握认为选代数题还是几何题与性别有关【解析】(1)女生中选几何题的有人,由此补全列联表即可(2)计算的值,对照临界值表下结论即可【详解】(1)由已知女生共20人,所以女生中选几何题的有(人),故表格补全如下:几何题代数题合计男同学22830女同学81220合计302050(2)由列联表知故有97.5%的把握认为选代数题还是几何题与性别有关【点睛】本题考查独立性检验,考查能力,是基础题19、(1);17,理由见解析;(2).【解析】(1)利用频率分布直方图能求出月销售额在,内的频率若的推销员能完成月销售额目标,则意味着的推销员不能完
18、成该目标根据频率分布直方图知,和,两组频率之和为0.18,由此能求出月销售额目标应确定的标准(2)根据直方图可知,销售额为,和,的频率之和为0.08,由可知待选的推销员一共有4人,设这4人分别为,利用列举法能求出选定的推销员来自同一个小组的概率【详解】解:(1)月销售额在小组内的频率为.若要使70%的推销员能完成月销售额目标,则意味着30%的推销员不能完成该目标.根据题图所示的频率分布直方图知,和两组的频率之和为0.18,故估计月销售额目标应定2为(万元).(2)根据直方图可知,月销售额为和的频率之和为0.08,由可知待选的推销员一共有4人.设这4人分别为,则不同的选择为,一共有6种情况,每一
19、种情况都是等可能的,而2人来自同一组的情况有2种,所以选出的推销员来自同一个小组的概率.【点睛】本题考查频率、月销售额目标、概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题20、 (1); (2);(3).【解析】写出二项式的通项公式.(1)根据二项式的通项公式可以求出此问;(2)根据奇数项的二项式系数和公式可以直接求出此问题;(3)设出系数绝对值最大的项为第(r +1)项,根据二项式的通项公式,列出不等式组,解这个不等式组即可求出此问题.【详解】二项式的通项公式为:.(1)第3项的二项式系数为,第三项的系数为;(2)奇数项的二项式系数和;(3
20、)设系数绝对值最大的项为第(r +1)项,则,又,所以r =2.系数绝对值最大的项为【点睛】本题考查了二项式通项公式的应用,考查了奇数项的二项式系数和公式,考查了数学运算能力.21、(1)M的极坐标为(1,),C2的直角坐标方程为x2+2y22(2)【解析】(1)根据极坐标与直角坐标的转化公式,得到M的直角坐标,利用,得到曲线的直角坐标方程;(2)将的参数方程代入的直角坐标方程,得到,而所求的,从而得到答案.【详解】(1) 由点M的极坐标为(,),可得点M的直角坐标为(1,),由2(1+sin2)2,得2+2sin22,xcos,ysin,C2的直角坐标方程为x2+2y22;(2)把(t为参数)代入x2+2y22,得7t2+24t+161设A,B两点对应的参数分别为t1,t2,则,又N点对应的参数为,|MN|【点睛】本题考查参数方程与极坐标方程化直角坐标方程,直线参数方程的几何意义,属于中档题.22、(1)m(1)(3)m1 ,1【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国美术学院《工业产品形态与设计元素》2023-2024学年第一学期期末试卷
- 小学关于紧急信息报送制度
- 浙江安防职业技术学院《三维网络游戏综合实践》2023-2024学年第一学期期末试卷
- 全球价值链重构与中国产业升级策略
- 数学知识解析
- 专业案例(暖通空调专业)-注册共用设备工程师(暖通空调)《专业案例》真题汇编3
- 房地产经纪综合能力-《房地产经纪综合能力》押题密卷1
- 年终项目报告
- 毕业晚会串词
- 春节发个闺蜜的祝福语短信
- 化工厂拆除施工方案
- 新能源汽车课件
- 人教版2024-2025学年七年级数学上册3.2代数式(压轴题综合测试卷)专题特训(学生版+解析)
- 17个岗位安全操作规程手册
- 骨科特殊检查-肩部特殊检查(康复评定技术)
- 医疗器械设备采购项目实施方案
- 人教版数学七年级上册3.3解一元一次方程去括号教学设计
- MATLAB与电力系统仿真
- 2025年山东省济南市第一中学高三下学期期末统一考试物理试题含解析
- 2024-2030年中国干燥设备行业研发创新状况及发展行情监测研究报告
- 科技创新引领产业创新专题研究报告
评论
0/150
提交评论