2022届湖北省黄冈、华师大附中等八校数学高二下期末复习检测模拟试题含解析_第1页
2022届湖北省黄冈、华师大附中等八校数学高二下期末复习检测模拟试题含解析_第2页
2022届湖北省黄冈、华师大附中等八校数学高二下期末复习检测模拟试题含解析_第3页
2022届湖北省黄冈、华师大附中等八校数学高二下期末复习检测模拟试题含解析_第4页
2022届湖北省黄冈、华师大附中等八校数学高二下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将本不同的书全部分给甲乙丙三人,每人至少一本,则不同的分法总数为( )ABCD2如图,已知函数,则它在区间上的图象大致为( )ABCD3已知是四面体内任一点,若四面体的每条棱长均为,则到这个四面体各面的距离之和为( )ABCD4已知fx是函

2、数fx的导函数,将y=fABCD5安排4名志愿者完成5项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A120种B180种C240种D480种6命题:,成立的一个充分但不必要条件为( )ABCD7已知,则( )ABC2D8甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即先赢2局者为胜根据以往二人的比赛数据分析,甲在每局比赛中获胜的概率为,则本次比赛中甲获胜的概率为( )ABCD9已知集合,则集合( )ABCD10若的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为ABCD11若函数为偶函数,则( )A-1B1C-1或1D012已知圆(x+1)2+y2=12的圆

3、心为C,点P是直线l:mx-y-5m+4=0上的点,若圆C上存在点Q使CPQ=A1-306C0,125二、填空题:本题共4小题,每小题5分,共20分。13命题“”为假命题,则实数的取值范围是 .14已知等比数列是函数的两个极值点,则_15函数是上的单调递增函数,则的取值范围是_.16一个高为1的正三棱锥的底面正三角形的边长为6,则此三棱锥的侧面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆:在左、右焦点分别为,上顶点为点,若是面积为的等边三角形.(1)求椭圆的标准方程;(2)已知,是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).18(1

4、2分)已知数列的前项和,且满足:,.(1)求数列的通项公式;(2)若,求数列的前项和.19(12分)等边的边长为,点,分别是,上的点,且满足 (如图(1),将沿折起到的位置,使二面角成直二面角,连接,(如图(2).(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.20(12分)约定乒乓球比赛无平局且实行局胜制,甲、乙二人进行乒乓球比赛,甲每局取胜的概率为(1)试求甲赢得比赛的概率;(2)当时,胜者获得奖金元,在第一局比赛甲获胜后,因特殊原因要终止比赛试问应当如何分配奖金最恰当?21(12分)已知函数在处取得极大值为.(1)求的值;(2)

5、求曲线在处的切线方程.22(10分)设函数(1)若函数为奇函数,(0,),求的值;(2)若,(0,),求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:分两种情况:一人得本,另两个人各得本;一人得本,另两个人各得本,分别求出不同的分法即可得结果.详解:分两种情况:一人得本,另两个人各得本,有种分法,一人得本,另两个人各得本,有种分法,共有种分法,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题

6、理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.2、D【解析】首先根据函数的奇偶性排除A,根据排除B,再根据时,故排除C,即可得到答案.【详解】因为的定义域为,所以为奇函数,故排除A.,故排除B.当时,故排除C.故选:D【点睛】本题主要考查根据函数图象选取解析式,熟练掌握函数的奇偶性和利用函数的特值检验为解题的关键,属于中档题.3、A【解析】先求出正四面体的体积,利用正四面体的体积相等,求出它到四个面的距离.【详解】解:因为正四面体的体积等于四个三棱锥的体积

7、和,设它到四个面的距离分别为,由于棱长为1的正四面体,四个面的面积都是;又顶点到底面的投影在底面的中心,此点到底面三个顶点的距离都是高的,又高为,所以底面中心到底面顶点的距离都是;由此知顶点到底面的距离是;此正四面体的体积是.所以:,解得.故选:A.【点睛】本题考查了正四面体的体积计算问题,也考查了转化思想和空间想象能力与计算能力.4、D【解析】根据fx的正负与f【详解】因为fx是函数fx的导数,fx0时,函数A中,直线对应fx,曲线对应B中,x轴上方曲线对应fx,x轴下方曲线对应fC中,x轴上方曲线对应fx,x轴下方曲线对应D中,无论x轴上方曲线或x轴下方曲线,对应fx时,fx都应该是单调函

8、数,但图中是两个不单调的函数,显然故选D【点睛】本题主要考查函数与导函数图像之间的关系,熟记导函数与导数间的关系即可,属于常考题型.5、C【解析】根据题意,分两步进行分析:先将5项工作分成4组,再将分好的4组进行全排,对应4名志愿者,分别求出每一步的情况数,由分步计数原理计算即可得到答案。【详解】根据题意,分2步进行分析:(1)先将5项工作分成4组,有种分组方法;(2)将分好的4组进行全排,对应4名志愿者,有种情况;分步计数原理可得:种不同的安排方式。故答案选C【点睛】本题考查排列、组合的综合应用,注意题目中“每人至少完成1项,每项工作由1人完成”的要求,属于基础题。6、A【解析】命题p的充分

9、不必要条件是命题p所成立的集合的真子集,利用二次函数的性质先求出p成立所对应的集合,即可求解【详解】由题意,令是一个开口向上的二次函数,所以对x恒成立,只需要,解得,其中只有选项A是的真子集故选A【点睛】本题主要考查了充分不必要条件的应用,以及二次函数的性质的应用,其中解答中根据二次函数的性质,求得实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题7、B【解析】直接利用和角公式和同角三角函数关系式的应用求出结果【详解】由,得,则,故.故选B【点睛】本题考查的知识要点:三角函数关系式的恒等变换,和角公式的应用,主要考察学生的运算能力和转换能力,属于基础题型8、D【解析】根据题意,可

10、知甲获胜情况有三种:第一局胜、第二局胜,第一局胜、第二局负、第三局胜,第一局负、第二局胜、第三局胜,由互斥事件概率加法运算即可求解.【详解】甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即先赢2局者为胜,甲在每局比赛中获胜的概率为,则甲获胜有以下三种情况:第一局胜、第二局胜,则甲获胜概率为;第一局胜、第二局负、第三局胜,则甲获胜概率为;第一局负、第二局胜、第三局胜,则甲获胜概率为;综上可知甲获胜概率为,故选:D.【点睛】本题考查了互斥事件概率求法,概率加法公式的应用,属于基础题.9、B【解析】由并集的定义求解即可.【详解】由题,则,故选:B【点睛】本题考查集合的并集运算,属于基础题.10、

11、B【解析】由题意知:,所以,故,令得所有项系数之和为.11、C【解析】由f(x)为偶函数,得,化简成xlg(x2+1m2x2)0对恒成立,从而得到x2+1m2x21,求出m1即可【详解】若函数f(x)为偶函数,f(x)f(x),即;得对恒成立,x2+1m2x21,(1m2)x20,1m20,m1故选C【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题12、C【解析】问题转化为C到直线l的距离d4.【详解】如图所示:过P作圆C的切线PR,切点为R,则CPQCPR,sin60sinCPmin4,则C到直线l|-m-0-5m+4|m2故选:C【点睛】本题考查了直线与圆的位置关系

12、,属中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:由题意可得命题:,为真命题.所以,解得.考点:命题的真假.14、或【解析】求导后根据是方程的两根,由韦达定理,列出两根的关系式,再利用等比数列的性质求.【详解】因为,又是函数f(x)的两个极值点,则是方程的根,所以,所以解得或.故答案为-2或2.【点睛】本题考查了利用导数研究函数的极值点的问题,考查了韦达定理和等比数列的性质的运用,属于基础题.15、【解析】在和分别保证对数型函数和一次函数单调递增;根据函数在上单调递增,确定分段处函数值的大小关系;综合所有要求可得结果.【详解】当时,若原函数为单调递增函数,则;当

13、时,若原函数为单调递增函数,则,解得:;为上的单调递增函数,解得:;综上所述:的取值范围为.故答案为:.【点睛】本题考查根据分段函数的单调性求解参数范围的问题,易错点是忽略函数在分段函数分段处函数值的大小关系,造成范围求解错误.16、18【解析】画出满足题意的三棱锥P-ABC图形,根据题意,画出高,利用直角三角形,求出此三棱锥的侧面上的高,即可求出棱锥的侧面积【详解】由题意画出图形,如图所示:因为三棱锥P-ABC是正三棱锥,顶点在底面上的射影D是底面的中心,在三角形PDF中:因为三角形PDF三边长PD=1,DF=3所以PF=2,则这个棱锥的侧面积S=3故答案为:18。【点睛】本题考查棱柱、棱锥

14、、棱台的侧面积和表面积和棱锥的结构特征,考查数形结合思想,还考查计算能力,是基础题,棱锥的侧面积是每一个侧面的面积之和。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、解(1);(2)或.【解析】(1)由是面积为的等边三角形,结合性质 ,列出关于 、 的方程组,求出 、,即可得结果;(2)先证明直线的斜率存在,设直线的方程为,与椭圆方程联立消去,利用弦长公式可得 ,化简得.原点到直线的距离为,的面积,当最大时,的面积最大.由,利用二次函数的性质可得结果.【详解】(1)由是面积为的等边三角形,得,所以,从而,所以椭圆的标准方程为.(2)由(1)知,当轴时,则为椭圆的短轴,故有

15、,三点共线,不合题意.所以直线的斜率存在,设直线的方程为,点,点,联立方程组消去,得,所以有,则 ,即,化简得.因为,所以有且.原点到直线的距离为,的面积,所以当最大时,的面积最大.因为,而,所以当时,取最大值为3,面积的最大值.把代入,得,所以有,即直线的方程为或.【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出从而写出椭圆的标准方程解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题涉及弦中点的问题常常用“点差法”解决,往往会更简单.18、(1);(2)【解析】试题分析:(1)当时,

16、可求出,当时,利用可求出是以2为首项,2为公比的等比数列,故而可求出其通项公式;(2)由裂项相消可求出其前项和.试题解析:(1)依题意:当时,有:,又,故,由当时,有,得:化简得:,是以2为首项,2为公比的等比数列,.(2)由(1)得:, 19、(1)证明见解析;(2)存在点,.【解析】(1)通过证明,即可证明平面;(2)以为坐标原点,以射线、分别为轴、轴、轴的正半轴建立空间直角坐标系,设,然后并求出平面的一个法向量及的坐标,最后根据即可求出的值及的长度.【详解】(1)证明题图(1)中,由已知可得:,.从而.故得,所以,.所以题图(2)中,所以为二面角的平面角, 又二面角为直二面角,所以,即,

17、因为且、平面,所以平面.(2)解存在.由(1)知,平面.以为坐标原点,以射线、分别为轴、轴、轴的正半轴建立空间直角坐标系,如图,过作交于点,设,则,易知,所以.因为平面,所以平面的一个法向量为.因为直线与平面所成的角为,所以,解得.所以,满足,符合题意.所以在线段上存在点,使直线与平面所成的角为,此时.【点睛】本题主要考查线面垂直的证明及通过建立空间直角坐标系并表示出平面的法向量及直线的方向向量的坐标,解决已知直线和平面所成的角求参数的值问题,属中等难度题.20、(1);(2)甲获得元,乙获得元.【解析】(1)甲赢得比赛包括三种情况:前局甲全胜;前三局甲胜局输局,第局胜;前局甲胜局输局,第局胜

18、.这三个事件互斥,然后利用独立重复试验的概率和互斥事件的概率加法公式可得出计算所求事件的概率;(2)设甲获得奖金为随机变量,可得出随机变量的可能取值为、,在第一局比赛甲获胜后,计算出甲获胜的概率,并列出随机变量的分布列,并计算出随机变量的数学期望的值,即可得出甲分得奖金数为元,乙分得奖金元.【详解】(1)甲赢得比赛包括三种情况:前局甲全胜;前三局甲胜局输局,第局胜;前局甲胜局输局,第局胜.记甲赢得比赛为事件,则;(2)如果比赛正常进行,则甲赢得比赛有三种情况:第、局全胜;第、局胜局输局,第局胜;第、局胜场输局,第局胜,此时甲赢得比赛的概率为.则甲获得奖金的分布列为0则甲获得奖金的期望为元,最恰当的奖金分配为:甲获得元,乙获得元.【点睛】本题考查利用独立重复试验和互斥事件的概率公式计算出事件的概率,同时也考查了随机变量分布列及其数学期望,考查运算求解能力,属于中等题.21、 (1);(2) .【解析】分析:(1)由题意得到关于a,b的方程组,求解方程组可知;(2)由(1)得,据此可得切线方程为.详解:(1),依题意得,即,解得,经检验,符合题意.(2)由(1)得,.,曲线在处的切线方程为,即.点睛:导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论