2022年河北省曲周县第一中学高二数学第二学期期末调研试题含解析_第1页
2022年河北省曲周县第一中学高二数学第二学期期末调研试题含解析_第2页
2022年河北省曲周县第一中学高二数学第二学期期末调研试题含解析_第3页
2022年河北省曲周县第一中学高二数学第二学期期末调研试题含解析_第4页
2022年河北省曲周县第一中学高二数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题

2、目要求的。1对任意实数,若不等式在上恒成立,则的取值范围是( )ABCD2在正方体中,与平面所成角的正弦值为( )ABCD3已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A,则B,则C,则D,则4若正数满足,则当取最小值时,的值为 ( )ABCD5为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是()P(K2k0)0.500.400.250.150.100.050.050.0100

3、.005k00.4550.7081.3232.0722.7063.8415.0246.6357.879A在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关6函数在区间 上的图象如图所示, ,则下列结论正确的是( )A在区间上,先减后增且B在区间上,先减后增且C在区间上,递减且D在区间上,递减且7一辆汽车在平直的公路上行驶,由于遇到紧急情况,以速度(的单

4、位:,的单位:)紧急刹车至停止.则刹车后汽车行驶的路程(单位:)是( )ABCD8复数的模为( )ABCD9若复数(为虚数单位)是纯虚数,则复数( )ABCD10 “人机大战,柯洁哭了,机器赢了”,2017年5月27日,19岁的世界围棋第一人柯洁0:3不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的2600男性中,有1560人持反对意见,2400名女性中,有1118人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A分层抽样B回归分析C独立性检验D频率分布

5、直方图11针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有( )人(K2k1)11511111k13.8416.635A12B6C11D1812如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若是函数的极值点,则在上的最小值为_.14展开式中不含项的系数的和为_.15用1,2,3,4,5这五个数字,可以组成没有重复

6、数字的三位奇数的个数为_(用数字作答)16一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利_元三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表. 表1,设

7、备改造后样本的频数分布表:质量指标值频数2184814162(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在25,30)内的定为一等品,每件售价240元,质量指标值落在20,25)或30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.18(12分)已知的展开式中第项是常数项.(1)求的值

8、;(2)求展开式中二项式系数最大的项,19(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元;方案二:每满200元可抽奖一次具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?20(12分)已知函数,其中均为实数,为自然对数的底数(

9、I)求函数的极值;(II)设,若对任意的,恒成立,求实数的最小值21(12分)已知点是椭圆的一个焦点,点 在椭圆上. ()求椭圆的方程;()若直线与椭圆交于不同的两点,且 (为坐标原点),求直线斜率的取值范围.22(10分)已知二项式的展开式中,前三项系数的绝对值成等差数列.(1)求正整数的值;(2)求展开式中二项式系数最大的项;(3)求展开式中系数最大的项.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】考点:绝对值不等式;函数恒成立问题分析:要使不等式|x+2|-|x-1|a恒成立,需f(x)=|x+2|-|x-1

10、|的最小值大于a,问题转化为求f(x)的最小值解:(1)设f(x)=|x+2|-|x-1|,则有f(x)=,当x-2时,f(x)有最小值-1;当-2x1时,f(x)有最小值-1;当x1时,f(x)=1综上f(x)有最小值-1,所以,a-1故答案为B2、B【解析】证明与平面所成角为,再利用边的关系得到正弦值.【详解】如图所示:连接与交于点,连接,过点作 与平面所成角等于与平面所成角正方体平面 平面 与平面所成角为设正方体边长为1在中故答案选B【点睛】本题考查了线面夹角,判断与平面所成角为是解得的关键,意在考查学生的计算能力和空间想象能力.3、D【解析】根据空间中直线与平面的位置关系的相关定理依次

11、判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.4、A【解析】根据正数满足,利用基本不等式有,再研究等号成立的条件即可.【详解】因为正数满足,所以,所以,当且仅当,即时取等号.故选:A【点睛】本题主要考查基本不等式取等号的条件,还考查了运算求解的能力,属于基础题.5、D【解析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.6437.

12、879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关选D.点睛:本题考查卡方含义,考查基本求解能力.6、D【解析】由定积分,微积分基本定理可得:f(t)dt表示曲线f(t)与t轴以及直线t0和tx所围区域面积,当x增大时,面积增大,减小,g(x)减小,故g(x)递减且g(x)0,得解【详解】由题意g(x)f(t)dt,因为x(0,4),所以t(0,4),故f(t)0,故f(t)dt的相反数表示曲线f(t)与t轴以及直线t0和tx所围区域面积,当x增大时,面积增大,减小,g(x)减小,故g(x)递减且g(x)0,故选:D【点睛】本题考查了定积分,微积分基本定理,属中

13、档题7、B【解析】先计算汽车停止的时间,再利用定积分计算路程.【详解】当汽车停止时,解得:或(舍去负值),所以.故答案选B【点睛】本题考查了定积分的应用,意在考查学生的应用能力和计算能力.8、A【解析】分析:首先根据复数模的公式以及复数的除法运算公式,将复数z化简,然后利用复数模的公式计算求得复数z的模.详解:因,所以,故选A.点睛:该题考查的是有关复数代数形式的除法运算以及复数模的计算公式,在求解的过程中,需要保证公式的正确性,属于简单题目.9、D【解析】通过复数是纯虚数得到,得到,化简得到答案.【详解】复数(为虚数单位)是纯虚数 故答案选D【点睛】本题考查了复数的计算,属于基础题型.10、

14、C【解析】根据“性别”以及“反对与支持”这两种要素,符合22,从而可得出统计方法。【详解】本题考查“性别”对判断“人机大战是人类的胜利”这两个变量是否有关系,符合独立性检验的基本思想,因此,该题所选择的统计方法是独立性检验,故选:C.【点睛】本题考查独立性检验适用的基本情形,熟悉独立性检验的基本思想是解本题的概念,考查对概念的理解,属于基础题。11、A【解析】由题,设男生人数x,然后列联表,求得观测值,可得x的范围,再利用人数比为整数,可得结果.【详解】设男生人数为,则女生人数为,则列联表如下:喜欢抖音不喜欢抖音总计男生 女生 总计 若有95%的把握认为是否喜欢抖音和性别有关,则 即 解得 又

15、因为为整数,所以男生至少有12人故选A【点睛】本题是一道关于独立性检验的题目,总体方法是运用列联表进行分析求解,属于中档题.12、D【解析】由三视图还原出原几何体,然后计算其表面积【详解】由三视图知原几何体是一个圆锥里面挖去一个圆柱,尺寸见三视图圆锥的母线长为,故选:D.【点睛】本题考查组合体的表面积,解题关键是由三视图还原出原几何体,确定几何体的结构二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先对f(x)求导,根据可解得a的值,再根据函数的单调性求出区间上的最小值【详解】,则,解得,所以,则.令,得或;令,得.所以在上单调递减;在上单调递增.所以.【点睛】本题考查由导数求函

16、数在某个区间内的最小值,解题关键是由求出未知量a14、0【解析】分析:由题意结合二项式定理展开式的通项公式整理计算即可求得最终结果.详解:由二项式展开式的通项公式可知展开式的通项公式为:,令可知的系数为:,中,令可知展开式的系数和为:,据此可知:不含项的系数的和为.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且nr,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项(2)求两个多项式的积的特定项,可先化简或利用分类加

17、法计数原理讨论求解15、【解析】通过先分析个位数字的可能,再排列十位和千位即得答案.【详解】根据题意,个位数字是1,3,5共有3种可能,由于还剩下4个数字,排列两个位置故可以组成没有重复数字的三位奇数的个数为,故答案为36.【点睛】本题主要考查排列组合相关知识,难度不大.16、37(元)【解析】由已知条件直接求出数学期望,即可求得结果【详解】一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利:500.6300.3200

18、.137(元)故答案为37(元)【点睛】本题主要考查了期望的实际运用,由已知条件,结合公式即可计算出结果,本题较为简单。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) 30.2;(2)分布列见解析, 400.【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)的可能取值为:240, 300,360, 420, 480,根据直方图求出样本中一、二、三等品的频率分别为,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【详解】(1)样本的质量指标平均值为.根据样本质量指标平均值估计总

19、体质量指标平均值为30.2 .(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为,故从所有产品中随机抽一件,是一、二、三等品的概率分别为,随机变量的取值为:240, 300,360, 420, 480,;,所以随机变量的分布列为:240300360420480.【点睛】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;

20、(2)概率计算关;(3)公式应用关.18、 (1) (2) 【解析】(1)利用展开式的通项计算得到答案.(2)因为,所以二项系数最大的项为与,计算得到答案.【详解】解:(1)展开式的通项为因为第项为常数项,所以第项, 即 (2)因为,所以二项系数最大的项为与即【点睛】本题考查了二项式的计算,意在考查学生的计算能力.19、(1)(2)方案二更为划算【解析】(1)设事件为“顾客获得半价”,可以求出,然后求出两位顾客都没有获得半价优惠的概率,然后利用对立事件的概率公式,求出两位顾客至少一人获得半价的概率;(2)先计算出方案一,顾客付款金额,再求出方案二付款金额元的可能取值,求出,最后进行比较得出结论

21、.【详解】(1)设事件为“顾客获得半价”,则,所以两位顾客至少一人获得半价的概率为:(2)若选择方案一,则付款金额为若选择方案二,记付款金额为元,则可取的值为,所以方案二更为划算【点睛】本题考查了对立事件的概率公式、离散型随机变量的分布列、期望.考查了应用数学知识解决现实生活中实际问题的能力.20、(1)当时,取得极大值,无极小值;(2).【解析】试题分析:(1)由题对得,研究其单调性,可得当时,取得极大值,无极小值;(2)由题当时,由单调性可得在区间上为增函数,根据,构造函数,由单调性可得在区间上为增函数,不妨设,则等价于,即,故又构造函数,可知在区间上为减函数,在区间上恒成立,即在区间上恒成立,设则,则在区间上为减函数,在区间上的最大值,试题解析:(1)由题得,令,得,列表如下:1大于00小于0极大值当时,取得极大值,无极小值;(2)当时,在区间上恒成立,在区间上为增函数,设,在区间上恒成立,在区间上为增函数,不妨设,则等价于,即,设,则在区间上为减函数,在区间上恒成立,在区间上恒成立,设,则在区间上为减函数,在区间上的最大值,实数的最小值为点睛:本题考查导数在研究函数性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论