版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD2陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰
2、的帝京景物略一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )ABCD3已知向量满足,且与的夹角为,则( )ABCD4在中,已知,为线段上的一点,且,则的最小值为( )ABCD5设为锐角,若,则的值为( )AB C D6过直线上一点作圆的两条切线,为切点,当直线,关于直线对称时,( )ABCD7等差数列中,已知,且,则数列的前项和中最小的是( )A或BCD8已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为( )ABCD9已知函数的零点为m,若存在实
3、数n使且,则实数a的取值范围是( )ABCD10已知,则,的大小关系为( )ABCD11函数的图象可能是( )ABCD12已知数列为等差数列,为其前 项和,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,复数且(为虚数单位),则_,_14若函数为偶函数,则_.15已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为_.16如果抛物线上一点到准线的距离是6,那么_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在
4、的值域.18(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.19(12分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.20(12分)已知函数()若,求曲线在点处的切线方程;()若在上恒成立,求实数的取值范围;()若数列的前项和,求证:数列的前项和.21(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;22(10分)已知不等式对于任意的恒成立
5、.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【题目详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的所
6、有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8个,.故选:A【答案点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题2、C【答案解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【题目详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【答案点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.3、A【答案解析】根据向量的运算法则展开后利用数量积的性
7、质即可.【题目详解】.故选:A.【答案点睛】本题主要考查数量积的运算,属于基础题.4、A【答案解析】在中,设,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【题目详解】在中,设,即,即,即,又,则,所以,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、,为线段上的一点,则存在实数使得,设,则,消去得,所以,当且仅当时,等号成立,因此,的最小值为.故选:A.【答案点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内
8、角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.5、D【答案解析】用诱导公式和二倍角公式计算【题目详解】故选:D【答案点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系6、C【答案解析】判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得【题目详解】如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,
9、设,则,,故选:C【答案点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角7、C【答案解析】设公差为,则由题意可得,解得,可得.令,可得当时,当时,由此可得数列前项和中最小的.【题目详解】解:等差数列中,已知,且,设公差为,则,解得,.令,可得,故当时,当时,故数列前项和中最小的是.故选:C.【答案点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.8、B【答案解析】利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【题目详解】如图,设为的中点,为的中点,
10、由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,;在中,;在中,.故选:B【答案点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.9、D【答案解析】易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.【题目详解】易知函数单调递增且有惟一的零点为,所以,问题转化为:使方程在区间上有解,即在区间上有解,而根据“对勾函数”可知函数在区间的值域为,.故选D【答案点睛】本题考查了函数的零点问题,考查了方程有解问题,分离参数法
11、及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.10、D【答案解析】构造函数,利用导数求得的单调区间,由此判断出的大小关系.【题目详解】依题意,得,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【答案点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.11、A【答案解析】先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【题目详解】函数的定义域为,该函数为偶函数,排除B、D选项;当时,排除C选项.故选:A.【答案点睛】本题考查根据函数的解析式辨别函数的图象
12、,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.12、B【答案解析】利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【题目详解】由等差数列的性质可得,.故选:B.【答案点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、 【答案解析】复数且,故答案为,14、【答案解析】二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【题目详解】由为偶函数,知其一次项的系数为0,所以,所以,故答案
13、为:-5【答案点睛】本题考查由奇偶性求解参数,求函数值,属于基础题15、【答案解析】连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【题目详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,则,当点的横坐标时,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【答案点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.16、【答案解析】先求出抛物线的准线方程,然后根据点到准线的距离为6,列出,直接求出结果.【题目详解】抛物线的
14、准线方程为,由题意得,解得.点在抛物线上,故答案为:.【答案点睛】本小题主要考查抛物线的定义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为;(2).【答案解析】(1)由题意利用三角函数图象变换规律求得的解析式,然后利用余弦函数的单调性,得出结论;(2)由题意利用余弦函数的图象的对称性求得,再根据余弦函数的定义域和值域,得出结论【题目详解】由题意得(1)向左平移个单位得到,增区间:解不等式,解得,减区间:解不等式,解得.综上可得,的单调增区间为,减区间为;(2)由题易知,因为的一条对称轴是,所以,解得,.又因为,所以,即.因为,所以,则
15、,所以在的值域是.【答案点睛】本题主要考查三角函数图象变换规律,余弦函数图象的对称性,余弦函数的单调性和值域,属于中档题18、(1)(2)证明见解析【答案解析】(1)由已知可得,构造等比数列即可求出通项公式;(2)当时,由,可求,时,由,可证,验证时,不等式也成立,即可得证.【题目详解】(1)由可得,即,所以,解得,(2)当时,,当时,综上,由可得递增,时;所以,综上:故.【答案点睛】本题主要考查了递推数列求通项公式,利用放缩法证明不等式,涉及等比数列的求和公式,属于难题.19、【答案解析】利用极坐标方程与普通方程、参数方程间的互化公式化简即可.【题目详解】因为,所以,所以曲线的直角坐标方程为
16、.由,得,所以曲线的普通方程为.由,得,所以(舍),所以,所以曲线的交点坐标为.【答案点睛】本题考查极坐标方程与普通方程,参数方程与普通方程间的互化,考查学生的计算能力,是一道容易题.20、 ();();()证明见解析.【答案解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:()因为,所以,切点为.由,所以,所以曲线在处的切线方程为,即()由,令,则(当且仅当取等号).故在上为增函数.当时,,故在上为增函数,所以恒成立,故符合题意;当时,由于,根据零点存在定理,必存在,使得,由于在上为增函数,故当时,,故在上为减
17、函数, 所以当时,,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为(III)证明:由由()知当时,故当时, 故,故.下面证明:因为而,所以,即:点睛:本题考查了利用导数的几何意义求出参数及证明不等式成立,借助第二问的证明过程,利用导数的单调性证明数列的不等式,在求解的过程中还要求出数列的和,计算较为复杂,本题属于难题21、(1)(2)当n为偶数时,;当n为奇数时,.(3)【答案解析】(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.(3)分类讨论,当
18、n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【题目详解】(1)由题意可知,.当时,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,当时,所以,当时,当时,所以,当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,所以,当n为奇数时,.解法二:猜测:当n为奇数时,.猜测:当n为偶数时,.以下用数学归纳法证明:,命题成立;假设当时,命题成立;当n为奇数时,当时,n为偶数,由得故,时,命题也成立.综上可知, 当n为奇数时同理,当n为偶数时,命题仍成立.(3)由(2)可知.当n为偶数时,所以随n的增大而减小从而当n为偶数时,的最大值是.当n为奇数时,所以随n的增大而增大,且.综上,的最大值是1.因此,若对于任意的,不等式恒成立,只需,故实数的取值范围是.【答案点睛】本题考查了累加法求数列通项公式的应用,分类讨论奇偶项的通项公式及求和方法,数学归纳法证明数列的应用,数列的单调性及参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论