版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数 的部分图象如图所示,则 ( )A6B5C4D32已知是虚数单位,若,则实数( )A或B-1或1C1D3已知复数(
2、1+i)(a+i)为纯虚数(i为虚数单位),则实数a=( )A-1B1C0D24已知集合A2,1,0,1,2,Bx|x24x50,则AB()A2,1,0B1,0,1,2C1,0,1D0,1,25已知函数,且在上是单调函数,则下列说法正确的是( )ABC函数在上单调递减D函数的图像关于点对称6从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为ABCD7定义:表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD8在棱长为2的正方体ABCDA1B1C1D1中,P为A1D1的中点,若三棱锥PABC的
3、四个顶点都在球O的球面上,则球O的表面积为( )A12BCD109已知复数满足,(为虚数单位),则( )ABCD310已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为ABCD11过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )ABCD12在中,点D是线段BC上任意一点,则( )AB-2CD2二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆:的左、右焦点分别为,如图是过且垂直于长轴的弦,则的内切圆方程是_.14袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,
4、则这2只球颜色不同的概率为_15内角,的对边分别为,若,则_16已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,当面积最大时,直线的方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知点到抛物线C:y1=1px准线的距离为1()求C的方程及焦点F的坐标;()设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值18(12分)已知函数(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性19(12分)已知函数,其中,.(
5、1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.20(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,
6、40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率21(12分)已知,(其中).(1)求;(2)求证:当时,22(10分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要
7、求的。1、A【答案解析】根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果【题目详解】由图象得,令=0,即=k,k=0时解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故选:A.【答案点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.2、B【答案解析】由题意得,然后求解即可【题目详解】,.又,.【答案点睛】本题考查复数的运算,属于基础题3、B【答案解析】化简得到z=a-1+a+1【题目详解】z=1+ia+i=a-1+a+
8、1i为纯虚数,故a-1=0故选:B.【答案点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.4、D【答案解析】解一元二次不等式化简集合,再由集合的交集运算可得选项.【题目详解】因为集合,故选:D.【答案点睛】本题考查集合的交集运算,属于基础题.5、B【答案解析】根据函数,在上是单调函数,确定 ,然后一一验证,A.若,则,由,得,但.B.由,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【题目详解】因为函数,在上是单调函数,所以 ,即,所以 ,若,则,又因为,即,解得, 而,故A错误.由,不妨令 ,得由,得 或当时,不合题意.当时,此时所以,故B正确.因为
9、,函数,在上是单调递增,故C错误.,故D错误.故选:B【答案点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.6、C【答案解析】由题可得,解得,则,所以这部分男生的身高的中位数的估计值为,故选C7、D【答案解析】由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.8、C【答案解析】
10、取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQADP为直三棱柱,此直三棱柱和三棱锥PABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【题目详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4R2=,故选:C.【答案点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.9、A【答案解析】,故,故选A.10、C【答案解析】将函数的图象向左平移个单位
11、长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为故选C11、B【答案解析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【题目详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【答案点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.12、A【答案解析】设,用表示出,求出的值即可得出答案.【题目详解】设由,.故选:A【答案点睛】本题考查了向量
12、加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标.【题目详解】由已知,设内切圆的圆心为,半径为,则,故有,解得,由,或(舍),所以的内切圆方程为.故答案为:.【答案点睛】本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题.14、【答案解析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、共6种,其中2只球的颜色
13、不同的是、共5种;所以所求的概率是考点:古典概型概率15、【答案解析】,即,16、【答案解析】根据均值不等式得到,根据等号成立条件得到直线的倾斜角为,计算得到直线方程.【题目详解】由椭圆,可知,(当且仅当,等号成立),直线的倾斜角为,直线的方程为.故答案为:.【答案点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 ()C的方程为,焦点F的坐标为(1,0);()1【答案解析】()根据抛物线定义求出p,即可求C的方程及焦点F的坐标;()设点A(x1,y1),B(x1,y1),由已知得Q(1,1)
14、,由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)1(k0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|NF|的值【题目详解】()由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)1(k0).由得,则,.因为点A,B在抛物线C上,所以,.因为PFx轴,所以,所以|MF|NF|的值为1.【答案点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解
15、,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.18、(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【答案解析】(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【题目详解】(1)当时,则切线的斜率为.又,则曲线在点的切线方程是,即.(2)的定义域是.当时,所以当时,;当时,所以在上单调递增,在上单调递减;当时,所以当和时,;当时,所以在和上单调递增,在上单调递减;当时,所以在上恒成立.所以在上单调递增;当
16、时,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【答案点睛】本题主要考查了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.19、 (1) 答案见解析(2) 【答案解析】(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【题目详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图
17、象与x轴相切于则即显然,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),设(), 恒大于零.在上单调递增.又,存在唯一,使,且时,时,当时,恒成立,在单调递增,无极值,不合题意.当时,可得当时,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.当时,可得当时,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.【答案点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题20、(1)(2)【答案解析】(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间20,25
18、)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率(2)当温度大于等于25时,需求量为500,求出Y900元;当温度在20,25)时,需求量为300,求出Y300元;当温度低于20时,需求量为200,求出Y100元,从而当温度大于等于20时,Y0,由此能估计估计Y大于零的概率【题目详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间20,25)和最高气温低于20的天数为2+16+3654,根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间20,25),需求量为300瓶,如果最高气温低于20,需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国白板磁条市场调查研究报告
- 2024至2030年中国灯笼罩行业投资前景及策略咨询研究报告
- 2024至2030年中国控制报警综合器行业投资前景及策略咨询研究报告
- 2024至2030年紫外光透过率及功率计项目投资价值分析报告
- 2024至2030年中国御香米行业投资前景及策略咨询研究报告
- 2024至2030年中国印刷配线用连接器行业投资前景及策略咨询研究报告
- 《TPM理念与指标》课件
- 2024年锥座项目可行性研究报告
- 2024年中国花椒油市场调查研究报告
- 高一英语必修2第5单元短语知识点归纳和总结
- 计算机专业生涯发展展示
- 广东省深圳市罗湖区2023-2024学年七年级上册期末地理试卷(含解析)
- 7-完整版班风学风建设主题班会PPT课件(3篇)
- 个税培训辅导课件
- 特巡警无人机培训课件
- 老年病科护理不良事件安全警示教育
- 语音信号处理与滤波(数字信号处理课程设计)
- 课堂-可以这么有声有色
- 老年人的健康体检知识讲座
- 京瓷哲学培训课件
- 设备部年终总结报告
评论
0/150
提交评论