版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021学年新教材高中数学第二章平面解析几何章末整合ppt课件新人教B版选择性必修第一册2021学年新教材高中数学第二章平面解析几何章末整合ppt课2021学年新教材高中数学第二章平面解析几何章末整合ppt课件新人教B版选择性必修第一册2021学年新教材高中数学第二章平面解析几何章末整合ppt课件新人教B版选择性必修第一册专题一专题二专题三专题四专题五专题六专题一、用待定系数法求直线或圆的方程例1过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=()专题一专题二专题三专题四专题五专题六专题一、用待定系数法求直专题一专题二专题三专题四专题五专题六答案:C 专题一
2、专题二专题三专题四专题五专题六答案:C 专题一专题二专题三专题四专题五专题六例2若一条直线经过两条直线x+3y-10=0和3x-y=0的交点,且原点到它的距离为1,求该直线的方程.解:设过两条直线交点的直线方程为x+3y-10+(3x-y)=0,即(1+3)x+(3-)y-10=0.因为原点到所求直线的距离为1,专题一专题二专题三专题四专题五专题六例2若一条直线经过两条直专题一专题二专题三专题四专题五专题六方法技巧1.求直线的方程、圆的方程的方法主要有两种:直接法和待定系数法,其中待定系数法应用最广泛,它是指首先设出所求直线的方程或圆的方程,然后根据题目条件确定其中的参数值,最后代入方程即得所
3、要求的直线方程或圆的方程.2.选择合适的直线方程、圆的方程的形式是很重要的.一般情况下,与截距有关的,可设直线的斜截式方程或截距式方程;与斜率有关的,可设直线的斜截式或点斜式方程等.与圆心和半径相关时,常设圆的标准方程,其他情况下设圆的一般方程.专题一专题二专题三专题四专题五专题六方法技巧1.求直线的方程专题一专题二专题三专题四专题五专题六变式训练1求经过点A(-2,-4)且与直线l:x+3y=26相切于点B(8,6)的圆C的一般方程.解:设圆C的一般方程为x2+y2+Dx+Ey+F=0,因为点A(-2,-4),B(8,6)在圆C上,CBl,故圆C的一般方程为x2+y2-11x+3y-30=0
4、.专题一专题二专题三专题四专题五专题六变式训练1求经过点A(-专题一专题二专题三专题四专题五专题六专题二、用图示法解决圆中的最值或范围问题 专题一专题二专题三专题四专题五专题六专题二、用图示法解决圆中专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六方法技巧1.数形结合思想,其实质是将抽象的数学语言与直观的图形结合起来,即把代数中的“数”与几何中的“形”结合起来认识问题,理解问题并解决问题的思维方法.数形结合一般包括两个方面,即以“形”助“数”,以“数”解“形”.2
5、.本章直线的方程和直线与圆的位置关系中有些问题,如距离、倾斜角、斜率、直线与圆相切等都很容易转化成“形”,因此这些问题若利用直观的几何图形处理会得到很好的效果.专题一专题二专题三专题四专题五专题六方法技巧1.数形结合思想专题一专题二专题三专题四专题五专题六变式训练2(1)已知B(3,4),求圆x2+y2=4上的点与B的最大距离和最小距离.解:如图所示,设直线BO与圆交于P,Q两点,P是圆上任意一点.则|BP|+|PO|BO|=|OP|+|BP|,|BP|BP|.P是圆上与B距离最近的点.|BP|BO|+|OP|=|BO|+|OQ|=|BQ|,Q是圆上与B距离最远的点.|BP|=3,|BQ|=7
6、.圆上的点与B的最大距离为7,最小距离为3.专题一专题二专题三专题四专题五专题六变式训练2(1)已知B(专题一专题二专题三专题四专题五专题六(2)已知P(x,y)为圆x2+y2-6x-4y+12=0上的点.求x2+y2的最大值和最小值.专题一专题二专题三专题四专题五专题六(2)已知P(x,y)为专题一专题二专题三专题四专题五专题六专题三、对称问题例5已知直线l:y=3x+3,求:(1)点P(4,5)关于l的对称点的坐标;(2)直线l1:y=x-2关于l的对称直线的方程.专题一专题二专题三专题四专题五专题六专题三、对称问题专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专
7、题一专题二专题三专题四专题五专题六例6已知圆C:x2+y2+Dx-6y+1=0上有两点P,Q关于直线x-y+4=0对称.(1)求圆C的半径;(2)若OPOQ,其中O为坐标原点,求直线PQ的方程;(3)直线l:(2m-1)x-(m-1)y+8m-6=0被圆C截得弦长最短时,求m的值.专题一专题二专题三专题四专题五专题六例6已知圆C:x2+y2专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六所以x1x2+y1y2=0.所以x1x2+(-x1+b)(-x2+b)=0.所以2x1x2-b(x1+x2)+b2=0.则b2-6b+1+b(4-b)
8、+b2=0,即b2-2b+1=0,解得b=1.经检验满足=4(4-b)2-42(b2-6b+1)0.所以直线PQ的方程为y=-x+1.专题一专题二专题三专题四专题五专题六所以x1x2+y1y专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六方法技巧1.中心对称(1)两点关于点对称:设P1(x1,y1),P(a,b),则P1(x1,y1)关于P(a,b)对称的点为P2(2a-x1,2b-y1),即P为线段P1P2的中点;特别地,P(x,y)关于原点对称的点为P(-x,-y).(2)两条直线关于点对称:设直线l1,l2关于点P对称,这时其中
9、一条直线上任一点关于P对称的点都在另外一条直线上,并且l1l2,P到l1,l2的距离相等.专题一专题二专题三专题四专题五专题六方法技巧1.中心对称专题一专题二专题三专题四专题五专题六2.轴对称(1)两点关于直线对称:设P1,P2关于直线l对称,则直线P1P2与l垂直,且P1P2的中点在l上,解决这类问题的关键是由“垂直”和“平分”列方程.(2)两条直线关于直线对称:设l1,l2关于直线l对称.当三条直线l1 ,l2,l共点时,l上任意一点到l1,l2的距离相等,并且l1,l2中一条直线上任意一点关于l对称的点在另外一条直线上;当l1l2l时,l1到l的距离等于l2到l的距离.3.涉及圆的对称问
10、题,主要把握住圆心;涉及的计算公式,同直线中的计算公式.特别地,直线f(x,y)=0关于直线y=x+a的对称直线方程为f(y-a,x+a)=0,直线f(x,y)=0关于直线y=-x+a的对称直线方程为f(a-y,a-x)=0,可以很方便地求解很多对称问题.专题一专题二专题三专题四专题五专题六2.轴对称专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六解析:(1)设两圆的圆心分别为A,B,因此原题可转化为在直线y=x上找一个点P,使|PB|-|PA|最大,即只需作点B关于直线y=x的对称点B,显然B的坐标是(0,2),从而可知原点即为要求
11、的点.故|PN|-|PM|的最(2)圆方程可化为(x+2)2+(y-4)2=20-a,则圆心为(-2,4),且20-a0,即a20.又圆关于y=2x+b成轴对称,所以点(-2,4)在直线y=2x+b上,所以b=8,所以a-b0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a0),求P点的轨迹.专题一专题二专题三专题四专题五专题六例8设A(-c,0),B专题一专题二专题三专题四专题五专题六方法技巧 专题一专题二专题三专题四专题五专题六方法技巧 专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六变式训练4(1)设A为圆(x-1)
12、2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程是()A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x解析:作图可知圆心(1,0)到P点距离为 ,所以P在以(1,0)为圆心,以 为半径长的圆上,其轨迹方程为(x-1)2+y2=2.答案:B专题一专题二专题三专题四专题五专题六变式训练4(1)设A为圆专题一专题二专题三专题四专题五专题六(2)过双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N.求线段QN的中点P的轨迹方程.解:设动点P的坐标为(x,y),点Q的坐标为(x1,y1),则点N的坐标为(2x-x1,2y-y1).因为点N
13、在直线x+y=2上,所以2x-x1+2y-y1=2.又因为PQ垂直于直线x+y=2,专题一专题二专题三专题四专题五专题六(2)过双曲线x2-y2专题一专题二专题三专题四专题五专题六专题五、离心率问题例9已知中心在坐标原点的双曲线C与抛物线x2=2py(p0)有相同的焦点F,点A是两曲线的交点,且AFy轴,则双曲线的离心率为()专题一专题二专题三专题四专题五专题六专题五、离心率问题专题一专题二专题三专题四专题五专题六答案:B 专题一专题二专题三专题四专题五专题六答案:B 专题一专题二专题三专题四专题五专题六答案:D 专题一专题二专题三专题四专题五专题六答案:D 专题一专题二专题三专题四专题五专题
14、六方法技巧 专题一专题二专题三专题四专题五专题六方法技巧 专题一专题二专题三专题四专题五专题六变式训练5(1)2019年1月3日10点26分(北京时间),“嫦娥四号”探测器成功着陆月球背面东经177.6度、南纬45.5度附近的预选着陆区,并通过“鹊桥”中继星传回了月背影像图,揭开了古老月背的神秘面纱.如图所示,假设“嫦娥四号”卫星沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道绕月飞行.若用e1和e2分别表示椭圆轨道和的离心率,则()A.e1e2B.e1a2,c1c2,且a1-c1=a2-c2.令
15、a1-c1=a2-c2=t,t0,a1=t+c1,a2=t+c2,专题一专题二专题三专题四专题五专题六解析:(1)设椭圆轨道专题一专题二专题三专题四专题五专题六(2)如图所示.根据余弦定理|AF|2=|BF|2+|AB|2-2|AB|BF|cosABF,即|BF|2-16|BF|+64=0,得|BF|=8.又|OF|2=|BF|2+|OB|2-2|OB|BF|cosABF,得|OF|=5.根据椭圆的对称性|AF|+|BF|=2a=14,得a=7.又|OF|=c=5,故离心率e= .专题一专题二专题三专题四专题五专题六(2)如图所示.专题一专题二专题三专题四专题五专题六(3)由圆x2+y2=a2
16、+b2,得x2+y2=c2,圆过焦点F1和F2.F1PF2=90.又2PF1F2=PF2F1,PF1F2=30,PF2F1=60.专题一专题二专题三专题四专题五专题六(3)由圆x2+y2=a专题一专题二专题三专题四专题五专题六专题六、圆锥曲线中的定点、定值、最值或探索类问题1.定点问题例11已知A(-2,0),B(2,0),点C是动点,且直线AC和直线BC的斜率之积为- .(1)求动点C的轨迹方程;(2)设直线l与(1)中轨迹相切于点P,与直线x=4相交于点Q,判断以PQ为直径的圆是否过x轴上一定点.专题一专题二专题三专题四专题五专题六专题六、圆锥曲线中的定点专题一专题二专题三专题四专题五专题
17、六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六方法技巧圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.专题一专题二专题三专题四专题五专题六方法技巧圆锥曲线中定点问专题一专题二专题三专题四专题五专题六变式训练6已知抛物线C的顶点在原点,焦点在坐标轴上,点A(1,2
18、)为抛物线C上一点.(1)求抛物线C的方程;(2)若点B(1,-2)在抛物线C上,过点B作抛物线C的两条弦BP与BQ,若kBPkBQ=-2,求证:直线PQ过定点.(1)解:若抛物线的焦点在x轴上,设抛物线方程为y2=ax,代入点A(1,2),可得a=4,所以抛物线方程为y2=4x.若抛物线的焦点在y轴上,设抛物线方程为x2=my,代入点A(1,2),可得专题一专题二专题三专题四专题五专题六变式训练6已知抛物线C的专题一专题二专题三专题四专题五专题六(2)证明:因为点B(1,-2)在抛物线C上,所以由(1)可得抛物线C的方程是y2=4x.易知直线BP,BQ的斜率均存在,设直线BP的方程为y+2=
19、k(x-1),将直线BP的方程代入y2=4x,消去y,得k2x2-(2k2+4k+4)x+(k+2)2=0.专题一专题二专题三专题四专题五专题六(2)证明:因为点B(1专题一专题二专题三专题四专题五专题六2.定值问题 专题一专题二专题三专题四专题五专题六2.定值问题 专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六方法技巧圆锥曲线中定值问题的两大解法从特殊入手,求出定值,再证明这个值与变量无关;引起变量法:其解题流程为专题一专题二专题三专题四专题五专题六方法技巧圆
20、锥曲线中定值问专题一专题二专题三专题四专题五专题六变式训练7已知直线l过抛物线C:x2=2py(p0)的焦点,且垂直于抛物线的对称轴,l与抛物线两交点间的距离为2.(1)求抛物线C的方程;(2)若点P(2,2),过点(-2,4)的直线m与抛物线C相交于A,B两点,设直线PA与PB的斜率分别为k1和k2.求证:k1k2为定值,并求出此定值.专题一专题二专题三专题四专题五专题六变式训练7已知直线l过抛专题一专题二专题三专题四专题五专题六(1)解:由题意可知,2p=2,解得p=1,则抛物线的方程为x2=2y.(2)证明:由题易知直线m的斜率存在,设直线m的方程为y-4=k(x+2),A(x1,y1)
21、,B(x2,y2),联立抛物线x2=2y与直线y-4=k(x+2)的方程消去y得x2-2kx-4k-8=0,其中=4(k2+4k+8)0恒成立,可得x1+x2=2k,x1x2=-4k-8,则k1k2=-1.因此k1k2为定值,且该定值为-1.专题一专题二专题三专题四专题五专题六(1)解:由题意可知,2专题一专题二专题三专题四专题五专题六3.最值问题例13已知点A(4,-2),F为抛物线y2=8x的焦点,点M在抛物线上移动,当|MA|+|MF|取最小值时,点M的坐标为()解析:如图,过点M作抛物线的准线l的垂线,垂足为E.由抛物线的定义知|MF|=|ME|.当点M在抛物线上移动时,|ME|+|M
22、A|的值在变化,显然当M移到M时,A,M,E三点共线,|ME|+|MA|最小,此时AMOx.把y=-2代入y2=8x,得x=答案:D专题一专题二专题三专题四专题五专题六3.最值问题解析:如图,专题一专题二专题三专题四专题五专题六例14已知F1,F2为椭圆x2+ =1的两个焦点,AB是过焦点F1的一条动弦,求ABF2面积的最大值.分析ABF2的面积是由直线AB的斜率k确定的,因此可构建以k为自变量的目标函数,用代数的方法求函数的最大值.专题一专题二专题三专题四专题五专题六例14已知F1,F2为椭专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五专题六专题一专题二专题三专题四专题五
23、专题六方法技巧与圆锥曲线有关的最值问题,大都是些综合性问题,解法灵活,技巧性强,涉及代数、三角、几何诸方面的知识,这类问题的求解策略与方法如下:(1)平面几何法.平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.(2)目标函数法.建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数.专题一专题二专题三专题四专题五专题六方法技巧与圆锥曲线有关的专题一专题二专题三专题四专题五专题六变式训练8(1)长为3的线段AB的两个端点在抛物线y2=2x上移动,M为AB的中点,则M点到y轴的最短距离为.专题一专题二专题三专题四专题五专题六变式训练8(1)长为3的专题一专题二专题三专题四专题五专题六答案:1 专题一专题二专题三专题四专题五专题六答案:1 专题一专题二专题三专题四专题五专题六(2)如图,点P(0,-1)是椭圆C1: (ab0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.求椭圆C1的方程;求ABD面积取最大值时直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抽样技术课程设计模版
- MRS2802-生命科学试剂-MCE
- 产品设计的情感化设计原则
- 城市规划与生态保护研究
- 有关传感器课程设计
- 中班单数双数课程设计
- 文艺手工制作课程设计
- 电力工程项目管理手册
- 2024年标准项目顾问协议模板详解版B版
- 托育课程设计下册
- 2024年人口老龄化国情区情教育知识竞赛试题及答案
- 《踝关节康复训练》课件
- 实验用猪营养需要
- 2023年压疮护理年终总结
- 大班PPT课件《拍手歌》
- 体育教育专业大学生职业生涯规划书
- 健康教育工作手册
- 华为经营管理-华为的研发管理(6版)
- 暂缓执行房产拍卖申请书
- 西方景观设计思潮影响下的遗址公园景观设计实践-以西安环城公园为例的开题报告
- 投标文件澄清通知 澄清函
评论
0/150
提交评论