小学六年级数学知识点及复习提纲_第1页
小学六年级数学知识点及复习提纲_第2页
小学六年级数学知识点及复习提纲_第3页
小学六年级数学知识点及复习提纲_第4页
小学六年级数学知识点及复习提纲_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 小学六年级数学知识点及复习提纲学校六班级数学学问点 分数乘法学问点 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 “分数乘整数”指的是其次个因数必需是整数,不能是分数。 2、一个数乘分数的意义就是求一个数的几分之几是多少。 “一个数乘分数”指的是其次个因数必需是分数,不能是整数。(第一个因数是什么都可以) (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。 (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必需是最简分数)。

2、 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) (1)假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的(方法)是:分子、分母同时除以它们的公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必需不再含有公因数,这样计算后的结果才是最简洁分数)。 (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。ab=c,当b 1时,ca。 一个数

3、(0除外)乘小于1的数,积小于这个数。ab=c,当b1时,ca(b0)。 p= 一个数(0除外)乘等于1的数,积等于这个数。ab=c,当b =1时,c=a 。 在进行因数与积的大小比较时,要留意因数为0时的特别状况。 (四)分数乘法混合运算 1、分数乘法混合运算挨次与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:ab=ba乘法结合律:(ab)c=a(bc) 乘法安排律:a(bc)=abac (五)倒数的意义:乘积为1的两个数互为倒数。 1、倒数是两个数的关系,它们相互依存,不能单独存在。单

4、独一个数不能称为倒数。(必需说清谁是谁的倒数) 2、推断两个数是否互为倒数的标准是:两数相乘的积是否为“1”。例如:ab=1则a、b互为倒数。 3、求倒数的方法: 求分数的倒数:交换分子、分母的位置。 求整数的倒数:整数分之1。 求带分数的倒数:先化成假分数,再求倒数。 求小数的倒数:先化成分数再求倒数。 4、1的倒数是它本身,由于11=1 0没有倒数,由于任何数乘0积都是0,且0不能作分母。 5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。 假分数的倒数小于或等于1。带分数的倒数小于1。 (六)分数乘法应用题用分数乘法解决问题 1、求一个数的几分之几是多少?(用乘法) 已知单位“

5、1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。 2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。 3、什么是速度? 速度是单位时间内行驶的路程。 速度=路程时间时间=路程速度路程=速度时间 单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。 4、求甲比乙多(少)几分之几? 多:(甲-乙)乙少:(乙-甲)乙 数与代数学问点 一、分数乘法 (一)分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分

6、数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 留意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (二)规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (三)分数混合运算的运算挨次和整数的运算挨次相同。 (四)整数乘法的交换律、结合律和安排律,对于分数乘法也同样适用。 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法安排律:(a+b)c=ac+bc ac+bc=(a+b)c 二、分数乘法的解决问

7、题(具体见重难点分解) (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面 2、求一个数的几倍:一个数几倍;求一个数的几分之几是多少:一个数 。 3、写数量关系式技巧: (1)“的”相当于“”(乘号) “占”、“是”、“比”“相当于”相当于“=”(等号) (2)分率前是“的”: 单位“1”的量分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率的对应量 二、分数除法 (一)倒数 1、倒数的意义:乘积是1的两个数互为倒数。 强调:互为倒数,即倒数是两个数的关系,它们相互依存,倒数不能

8、单独存在。(要说清谁是谁的倒数)。 2、求倒数的方法:(原数与倒数之间不要写等号哦) (1)求分数的倒数:交换分子分母的位置。 (2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)求带分数的倒数:把带分数化为假分数,再求倒数。 (4)求小数的倒数:把小数化为分数,再求倒数。 3、由于11=1,1的倒数是1; 由于找不到与0相乘得1的数0没有倒数。 4、对于任意数a(a0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 (二)分数除法 1、分数除法的意义: 分数除法与整数除法

9、的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)当除数大于1,商小于被除数; (2)当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。 4、“ ”叫做中括号。一个算式里,假如既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 (三)分数除法解决问题(具体见重难点分解) (未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。 ) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”:

10、单位“1”的量分率=分率对应量 (2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量 2、解法:(建议:用方程解答) (1)方程:依据数量关系式设未知量为x,用方程解答。 (2)算术(用除法):分率对应量对应分率=单位“1”的量 3、求一个数是另一个数的几分之几:就用一个数另一个数 4、求一个数比另一个数多(少)几分之几: 求多几分之几:大数小数 1 求少几分之几:1 -小数大数 或求多几分之几(大数-小数)小数 求少几分之几:(大数-小数)大数 (四)比和比的应用 1、比的意义:两个数相除又叫做两个数的比。 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的

11、后项。比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。 例如 15:10 = 1510=1.5 前项比号后项比值 3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。 例:路程速度=时间。 4、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 5、依据分数与除法的关系,两个数的比也可以写成分数形式。 6、比和除法、分数的联系: 7、比和除法、分数的区分:除法是一种运算,分数是一个数,比表示两个数的关系。 8、依据比与除法、分数的关系,可以理解比的

12、后项不能为0。 体育竞赛中消失两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (五)比的基本性质 1、依据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、依据比的基本性质,可以把比化成最简洁的整数比。 4.化简比: (1)用比的基本性质化简 用比的前项和后项同时除以它们的公因数。 两个分数的比:用前

13、项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 两个小数的比:向右移动小数点的位置,先化成整数比再化简。 (2)用求比值的方法。留意:最终结果要写成比的形式。 5.按比例安排:把一个数量根据肯定的比来进行安排。这种方法通常叫做按比例安排。 如:已知两个量之比为,则设这两个量分别为。 6、路程肯定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量肯定,工作效率和工作时间成反比。 (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3) 三、百分数 (一)百分数的意义和写法 1、百分数的意义:表示一个数是另一个数的百分之几。 百分数是指的两个数的

14、比,因此也叫百分率或百分比。 2、百分数和分数的主要联系与区分: (1)联系:都可以表示两个量的倍比关系。 (2)区分: 意义不同:百分数只表示两个数的倍比关系,不能表示详细的数量,所以不能带单位; 分数既可以表示详细的数,又可以表示两个数的关系,表示具本数时可以带单位。 、百分数的分子可以是整数,也可以是小数; 分数的分子不能是小数,只能是除0以外的自然数。 3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。 (二)百分数与小数的互化: 1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。 2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。 (三)百

15、分数的和分数的互化 1、百分数化成分数: 先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。 2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 (四)常见的分数与小数、百分数之间的互化 圆的面积学问 1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。 2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用渐渐靠近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,

16、化简单为简洁,化抽象为详细。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 4、环形的面积: 一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.) S环= R2-r2或 环形的面积公式:S环=(R2-r2)。 5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。 例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。 例如: 两个圆的半径比是23,那么这两个圆的直径比

17、和周长比都是23,而面积比是49 7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4 8、当长方形,正方形,圆的周长相等时,圆面积,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 9、确定起跑线: (1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。 (2)、每条跑道直道的长度都相等,而各圆周长打算每条跑道的总长度。(因此起跑线不同) (3)、每相邻两个跑道相隔的距离是:2跑道的宽度 (4)、当一个圆的半径增加a厘米时,它的周长就增加2a厘米;当一个圆的直径增加a厘米时,它的周长就增加a厘米。 10、常用各值结果: 2 =

18、6.28 3 = 9.42 4 = 12.56 5 = 15.7 6 = 18.84 7 = 21.98 8 = 25.12 9 = 28.26 10 = 31.4 16 = 50.24 25 = 78.5 36 = 113.04 64 = 200.96 96 = 301.44 学校六班级数学复习提纲 一、算术 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:a + b = b + a 3、乘法交换律:a b = b a 4、乘法结合律:a b c = a (b c) 5、乘法安排律:a b + a c = a b + c 6、除法的性质:a b c = a (b c) 7、

19、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参与运算,有几个零都落下,添在积的末尾。 8、有余数的除法: 被除数=商除数+余数 二、方程、代数与等式 等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍旧成立。 方程式:含有未知数的等式叫方程式。 一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。 代数: 代数就是用字

20、母代替数。 代数式:用字母表示的式子叫做代数式。如:3x =ab+c 三、分数 分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加

21、减。 倒数的概念:1.假如两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。 分数除以整数(0除外),等于分数乘以这个整数的倒数。 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小 分数的除法则:除以一个数(0除外),等于乘这个数的倒数。 真分数:分子比分母小的分数叫做真分数。 假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 带分数:把假分数写成整数和真分数的形式,叫做带分数。 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 四、体积和表面积 三角形的面积=底高2。

22、 公式 S= ah2 正方形的面积=边长边长 公式 S= a2 长方形的面积=长宽 公式 S= ab 平行四边形的面积=底高 公式 S= ah 梯形的面积=(上底+下底)高2 公式 S=(a+b)h2 内角和:三角形的内角和=180度。 长方体的表面积=(长宽+长高+宽高 ) 2 公式:S=(ab+ac+bc)2 正方体的表面积=棱长棱长6 公式: S=6a2 长方体的体积=长宽高 公式:V = abh 长方体(或正方体)的体积=底面积高 公式:V = abh 正方体的体积=棱长棱长棱长 公式:V = a3 圆的周长=直径 公式:L=d=2r 圆的面积=半径半径 公式:S=r2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=dh=2rh 圆柱的表面积:圆柱的.表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2r2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面积高。公式:V=1/3S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论