版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )A至少有一个样本点落在回归直线上B若所有样本点都在回归直线上,则变量同的相关系数为1C对所有的解释变量(),的
2、值一定与有误差D若回归直线的斜率,则变量x与y正相关2已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD3给出以下四个命题:依次首尾相接的四条线段必共面;过不在同一条直线上的三点,有且只有一个平面;空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;垂直于同一直线的两条直线必平行.其中正确命题的个数是( )A0B1C2D34正项等差数列的前和为,已知,则=( )A35B36C45D545甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.甲同学成绩的中位数大于乙同学成绩的中位
3、数;甲同学的平均分比乙同学的平均分高;甲同学的平均分比乙同学的平均分低;甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是( )ABCD6若复数是纯虚数,则实数的值为( )A或BCD或7已知函数,以下结论正确的个数为( )当时,函数的图象的对称中心为;当时,函数在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D48已知,则的值等于( )ABCD9如图,在三棱锥中,平面,分别是棱,的中点,则异面直线与所成角的余弦值为A0BCD110已知锐角满足则( )ABCD11已知集合,则集合真子集的个数为( )A3B4C7D812已知函数,的零点分别为,则( )ABCD二、填
4、空题:本题共4小题,每小题5分,共20分。13已知复数对应的点位于第二象限,则实数的范围为_.14若,则_.15已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_.16集合,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为_的值可以为2;的值可以为;的值可以为;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知a0,b0,a+b=2.()求的最小值;()证明:18(12分)如图,在正三棱柱中,分别为,的中点(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值19(12分)已知数列,其前项和为,满足,其中,.若,(),求证:
5、数列是等比数列;若数列是等比数列,求,的值;若,且,求证:数列是等差数列.20(12分)设函数f(x)=ax2alnx,g(x)=,其中aR,e=2.718为自然对数的底数.()讨论f(x)的单调性;()证明:当x1时,g(x)0;()确定a的所有可能取值,使得f(x)g(x)在区间(1,+)内恒成立.21(12分)在中,、分别是角、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.22(10分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H过抛物线焦点
6、F的直线l与抛物线C交于A,B,且,求的值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】对每一个选项逐一分析判断得解.【题目详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确故选D【答案点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识
7、的理解掌握水平和分析推理能力.2、B【答案解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【题目详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【答案点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解3、B【答案解析】用空间四边形对进行
8、判断;根据公理2对进行判断;根据空间角的定义对进行判断;根据空间直线位置关系对进行判断.【题目详解】中,空间四边形的四条线段不共面,故错误.中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故正确.中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误.中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故错误.故选:B【答案点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.4、C【答案解析】由等差数列通项公式得,求出,再利用等差数
9、列前项和公式能求出.【题目详解】正项等差数列的前项和,解得或(舍),故选C.【答案点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质()与前 项和的关系.5、A【答案解析】由茎叶图中数据可求得中位数和平均数,即可判断,再根据数据集中程度判断.【题目详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故错误;,则,故错误,正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故正确,故选:A【答案点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.6、C【答案解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不
10、为零这一隐含条件.考点:纯虚数7、C【答案解析】逐一分析选项,根据函数的对称中心判断;利用导数判断函数的单调性;先求函数的导数,若满足条件,则极值点必在区间;利用导数求函数在给定区间的最值.【题目详解】为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确由题意知因为当时,又,所以在上恒成立,所以函数在上为单调递减函数,正确由题意知,当时,此时在上为增函数,不合题意,故令,解得因为在上不单调,所以在上有解,需,解得,正确令,得根据函数的单调性,在上的最大值只可能为或因为,所以最大值为64,结论错误故选:C【答案点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基
11、本的判断方法,属于基础题型.8、A【答案解析】由余弦公式的二倍角可得,再由诱导公式有,所以【题目详解】由余弦公式的二倍角展开式有又故选:A【答案点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题9、B【答案解析】根据题意可得平面,则即异面直线与所成的角,连接CG,在中,易得,所以,所以,故选B10、C【答案解析】利用代入计算即可.【题目详解】由已知,因为锐角,所以,即.故选:C.【答案点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.11、C【答案解析】解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【题目详解】解:
12、由,得所以集合的真子集个数为个.故选:C【答案点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.12、C【答案解析】转化函数,的零点为与,的交点,数形结合,即得解.【题目详解】函数,的零点,即为与,的交点,作出与,的图象,如图所示,可知故选:C【答案点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由复数对应的点,在第二象限,得,且,从而求出实数的范围【题目详解】解:复数对应的点位于第二象限,且,故答案为:【答案点睛】本题主要考查复数与
13、复平面内对应点之间的关系,解不等式,且 是解题的关键,属于基础题14、13【答案解析】由导函数的应用得:设,所以,又,所以,即,由二项式定理:令得:,再由,求出,从而得到的值;【题目详解】解:设,所以,又,所以,即,取得:,又,所以,故,故答案为:13【答案点睛】本题考查了导函数的应用、二项式定理,属于中档题15、【答案解析】根据三角形三边关系可知对任意的恒成立,将的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论,转化为的最小值与的最大值的不等式,进而求出的取值范围.【题目详解】因为对任意正实数,都
14、存在以为三边长的三角形,故对任意的恒成立,令,则,当,即时,该函数在上单调递减,则;当,即时,当,即时,该函数在上单调递增,则,所以,当时,因为,所以,解得;当时,满足条件;当时,且,所以,解得,综上,故答案为:【答案点睛】本题考查参数范围,考查三角形的构成条件,考查利用函数单调性求函数值域,考查分类讨论思想与转化思想.16、【答案解析】根据对称性,只需研究第一象限的情况,计算:,得到,得到答案.【题目详解】如图所示:根据对称性,只需研究第一象限的情况,集合:,故,即或,集合:,是平面上正八边形的顶点所构成的集合,故所在的直线的倾斜角为,故:,解得,此时,此时.故答案为:.【答案点睛】本题考查
15、了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()最小值为;()见解析【答案解析】(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【题目详解】()则当且仅当,即,时,所以的最小值为()要证明:,只需证:,即证明:,由,也即证明:因为,所以当且仅当时,有,即,当时等号成立所以【答案点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.18、(1)证明见详解;(2).【答案解析】(1)取中点为,通过证明/,进而
16、证明线面平行;(2)取中点为,以为坐标原点建立直角坐标系,求得两个平面的法向量,用向量法解得二面角的大小.【题目详解】(1)证明:取的中点,连结,如下图所示:在中,因为 为的中点,且,又为的中点,且,且,四边形为平行四边形,又平面,平面,平面,即证.(2)取中点,连结,则,平面,以为原点,分别以,为,轴,建立空间直角坐标系,如下图所示:则,设平面的一个法向量,则,则,令则,同理得平面的一个法向量为,则,故平面与平面所成二面角(锐角)的余弦值为.【答案点睛】本题考查由线线平行推证线面平行,以及利用向量法求解二面角的大小,属综合中档题.19、(1)见解析(2)(3)见解析【答案解析】试题分析:(1
17、)(), 所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以, 又由,得,即,所以,故数列是等比数列 (2)若是等比数列,设其公比为( ),当时,即,得, 当时,即,得,当时,即,得,得 , ,得 , 解得代入式,得 此时(),所以,是公比为的等比数列,故 (3)证明:若,由,得,又,解得由, ,代入得,所以,成等差数列,由,得,两式相减得:即所以相减得:所以所以, 因为,所以,即数列是等差数列.20、()当时,0,单调递减;当时,0,单调递增;()详见解析;().【答案解析】试题分析:本题考查导数的计
18、算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第()问,对求导,再对a进行讨论,判断函数的单调性;第()问,利用导数判断函数的单调性,从而证明结论,第()问,构造函数=(),利用导数判断函数的单调性,从而求解a的值.试题解析:()0,在内单调递减.由=0有.当时,0,单调递减;当时,0,单调递增.()令=,则=.当时,0,所以,从而=0.()由(),当时,0.当,时,=.故当在区间内恒成立时,必有.当时,1.由()有,而,所以此时在区间内不恒成立.当时,令=().当时,=.因此,在区间单调递增.又因为=0,所以当时,=0,即恒成立.综上,.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明不等式,一般证明的最小值大于0,为此要研究函数的单调性本题中注意由于函数的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围比较新颖,学生不易想到,有一定的难度21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路照明检修工程施工方案
- 养殖场汽车消毒施工方案
- 物料起重机施工方案
- 苏州无空气喷涂施工方案
- 2025年塑料铜芯线项目投资可行性研究分析报告
- 2023-2029年中国K12在线英语教育行业发展监测及投资前景展望报告
- 2025年电子金属制品项目可行性研究报告
- 家居用品运输简易合同模板
- 城市垃圾清运服务合同
- 湖北艺术职业学院《Matab及其在地学中的应用》2023-2024学年第一学期期末试卷
- 春节文化常识单选题100道及答案
- 24年追觅在线测评28题及答案
- TGDNAS 043-2024 成人静脉中等长度导管置管技术
- 《陆上风电场工程概算定额》NBT 31010-2019
- FZ∕T 63006-2019 松紧带
- 罐区自动化系统总体方案(31页)ppt课件
- BIQS评分表模板
- 工程建设项目内外关系协调措施
- 招投标法考试试题及答案
- 皮带输送机工程施工电气安装措施要点
- 药房(冰柜)温湿度表
评论
0/150
提交评论