测控系统原理与设计05-PID控制算法_第1页
测控系统原理与设计05-PID控制算法_第2页
测控系统原理与设计05-PID控制算法_第3页
测控系统原理与设计05-PID控制算法_第4页
测控系统原理与设计05-PID控制算法_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第5章 PID控制算法PID控制:根据偏差的比例(P)、积分(I)、微分(D)进行控制,称为PID控制。PID控制的优点:历史最久、应用最广,适应性最强的控制方式。在工业生产过程中,PID控制算法占85%90%。5.1 PID控制原理与程序流程5.1.1 过程控制的基本概念过程控制采用模拟或数字控制方式对生产过程的某一或某些参数进行的自动控制。过程控制系统分类:模拟过程控制系统数字过程控制系统模拟过程控制系统基本模拟反馈控制回路:控制规律通常采用比例、积分、微分关系或由此作出的简化形式,这些关系的实现,必须通过相应的硬件来完成。微机过程控制系统在计算机控制系统中,控制规律的实现,是通过软件来完

2、成的。数字(微机)过程控制具有更好的灵活性,对较复杂的工业控制过程,更容易实现,且系统更优化,可靠性更高。微机过程控制系统的种类生产过程的巡回检测和数据处理:直接数字控制DDC(Direct digital control):特点:微机决策直接作用于过程,且通过改变程序就能有效实现较复杂的控制。5.1.2 模拟PID调节器在模拟控制系统中,调节器最常用的控制规律是PID控制。常规模拟PID系统原理框图如下:PID调节器r(t)为给定输入值c(t)为实际输出值e(t)为控制偏差e(t)分别经比例、积分和微分环节,通过线性组合构成控制量PID控制器的微分方程:式中,KP为比例系数,TI为积分时间常

3、数,TD为微分时间常数。实际应用中,可根据控制对象的特点和控制要求,将PID三个环节进行适当组合,以达到有效的控制目的。PID三个校正环节的作用:比例环节P即时成比例地反映偏差信号e(t)的大小,并立即产生控制作用。比例控制实际上是一个放大器,增益越大,调节作用越强,系统的响应性能越好但是增益过大,会导致系统不稳定。比例控制存在稳态误差,增大增益可以减小稳态误差,但不能消除稳态误差。对于干扰较大,惯性也较大的系统,不宜单独使用比例控制。积分环节I主要起消除系统稳态误差,提高系统的稳态特性。其作用的强弱取决于积分常数T1。积分作用越弱微分环节D能反映偏差信号的变化趋势(速率),并可缩短瞬态响应的

4、过渡过程。模拟PID的传递函数为:5.1.3 数字PID控制器数字PID控制器是用微机取代模拟PID中的模拟调节器,即用软件完成控制规律的实现。控制规律离散化的算法设计用软件实现PID控制规律,就是将上述PID控制规律的函数,用离散化方式实现,即上图中,第n次采样时,相关参数分别用r(n)、e(n)、u(n)、c(n)表示,则有:当采样周期T很小时,则可做如下近似处理:“积分”“求和”因此,模拟PID控制规律可离散化为以下的差分方程式:u0为偏差为零时的初值上式可看成由三部分组成:比例(P)项积分(I)项微分(D)项这三部分可单独使用(微分作用一般不单独使用),也可组合使用,一般可为:P控制:

5、PI控制:PD控制:PID控制:实际PID算式分类位置型PID算式该算式中,u(n)为全量输出,与被控对象的执行机构在采样时刻应达到的位置对应。缺点:e(i)占用大量内存,且不便于编写程序。增量型PID算式由位置型PID算式可得:由此可得:上式即为增量型数字PID算式。KP为比例系数KI=KPT/TI为积分系数KI=KPTD/T为微分系数为编程方便,可将上式整理成如下:其中也可得到位置型PID算法的递推形式:两种类型的主要差别是:由谁来完成控制量的累加。位置型PID由控制器进行累加,直接计算控制量。增量型PID由执行机构进行累加。在实际应用中,采用不同的类型,其控制系统有所不同,且相对而言,增

6、量型数字PID具有其一定的优点。若某个控制系统,其执行机构为调节阀,控制量为阀门开度,则采用位置型PID控制,其控制示意图如下:若执行机构为步进电机,控制量为相对于上次控制量的增量,则采用增量型PID控制,其控制示意图如下:两种数字PID算法的特点:增量型不用做累加,控制增量仅与最近几次偏差采样值有关,因而控制量的计算精度较高;而位置型是过去偏差的累加值,易产生较大的累加误差。增量型得出的是控制量的增量,误动作影响小;增量型易实现手动到自动的无冲击切换。【例5-1】设有一温度控制系统,温度测量范围是0600 ,温度采用PID控制,控制指标为450 2 。已知比例系数KP=4,积分时间TI=60

7、s,微分时间TD=5s,采样周期T=5s。当测量值c(n)=448,c(n-1)=449,c(n-2)=442时,计算增量输出 。若u(n-1)=1860,计算第n次阀位输出u(n)。解:将题中给出的参数代入有关公式计算得由题可知,给定值r=450,结合题中测量值可得由增量型控制算式得到:由位置型递推控制算式可得:5.1.4 PID算法的程序流程一、增量型PID算法的程序流程由增量型PID算式可知:要计算现时刻的增量,只须保留现时刻及以前的两个偏差值即可。由此初始化程序时,置初值为:再结合已知参数a0、a1、a2计算 。启动计算参数a0、a1、a2设置初值e(n-1)=e(n-2)=0输入检测

8、到的反馈量c(n)计算e(n)=r(n)-c(n)计算u(n)=a0e(n)+a1e(n-1)+ a2e(n-2)输出控制增量量u(n)更新e(n-1)=e(n-2) e(n-2)=e(n)采样时刻到否?被控对象A/DD/A执行机构二、位置型PID算法的程序流程(略)需注意的问题:无论哪种PID算法,都可能使执行机构的实际位置达到上(或下)限,而控制量仍在变化。测控系统内PID算法总受到一定运算字长限制,如D/A转换器的位数一定。因而算法上应对u(n)进行限幅:在某些系统,即使控制量在上小限之间,也不允许控制量过大,此时不仅要极限位置的限幅,也要考虑相对位置的限幅。在软件上,只要用上、下限比较

9、的方法就能实现,对不同的情况调整上下限值即可。5.2 数字PID控制器算法的改进5.3 数字PID参数的选择5.3.1 采样周期的选择数字PID控制实际上是一种建立在计算机基础上,对连续PID控制进行数字模拟的准连续控制。显然,采样周期越小,数字模拟越精确,控制效果越逼近连续控制。但采样周期过短,会占用较多的计算机工作时间,也会增加计算负担,且对变化缓慢的受控对象没有多少实际意义。采样周期的确定,一般是按一定原则,结合经验来选择。 采样定理给出了采样周期的上限值,即:最大采样周期信号中最高频率分量采样定理未给出了采样周期的下限值。一般而言,最小采样周期Tmin应是微机执行控制程序所需的时间。从

10、而实际采样周期T应满足:采样周期T的选择,应综合考虑以下因素:给定值的变化频率给定值的变化频率采样频率被控对象的特性被控对象变化慢采样周期T被控对象变化快采样周期T另外,从抗干扰角度考虑,要求采样周期T要选折较短。使用的算式和执行机构的类型PID算式中的积分和微分作用都与采样周期的选择有关。采样周期太小使积分和微分作用不明显受计算机计算精度影响,当T小到一定程度,前后两次采样的差别无法反映,从而使调节作用减弱。另外,T的选择还需与执行机构动作惯性大小相适应。一般而言:控制的回路数控制回路n采样周期T控制回路数n与采样周期T有如下关系:第j个回路控制程序执行时间教材p180所示的表5-3-1是常

11、用被控量的经验采样周期值。5.3.2 数字PID控制的参数选择数字PID参数选择应考虑的因素:使被控过程稳定,能迅速和准确地跟踪给定值的变化,超调量小;在不同干扰下,系统输出应能保持在给定值,操作变量不宜过大;在系统和环境参数发生变化时,控制应保持稳定。PID参数确定方法通常分为理论计算法和工程整定法两种,其中最实用的是工程整定法:一、扩充临界比例度法适用于具有自平衡特性的对象,步骤如下:(1)选择一个足够短的采样周期,具体为被控对象纯滞后时间的1/10以下。(2)用选定的采样周期使系统工作:去掉积分和微分作用,使调节器为纯比例环节,逐渐增大比例系数KP,直至系统对阶跃输入的响应达到临界振荡状

12、态,并记下此时的临界比例系数KK和系统的临界振荡周期TK;(3)选择控制度:控制度以模拟调节器为基准,将数字调节器和模拟调节器的控制效果比较的结果。控制度的评价函数为:控制误差两者控制效果相当DDC控制效果比模拟差(4)根据选定的控制度,查表5-3-2求得T、KP、TI、TD的值。二、扩充响应曲线法该方法是基于模拟PID参数的响应曲线整定方法。参数整定步骤如下:(1)数字调节器不接入控制系统,让系统处于手动状态,将被调量调节到给定值附近,并使之稳定下来,让后突然改变给定值,给对象一个阶跃输入信号。(2)用记录仪记录被调量在阶跃输入下的整个变化曲线,如下图所示。(3)在曲线最大斜率处做切线。求得

13、滞后时间被控对象时间常数以上两者的比值(4)由上面求得的参数,查表5-3-3即可求得数字PID调节器的有关参数。三、归一参数整定法这是一种基于扩充临界比例度法的简化整定法,详见教材p182。5.4 数字PID控制的工程实现 数字控制器的算法程序,可被所有的控制回路所公用。只是由于各回路的控制参数不同,需为每个回路设置一段专用的内存数据区,以存储相应回路的参数。 因而在工程实践中,算法程序的设计,应考虑各种工程实际问题,并具备多种功能,以便用户选择。数字控制器算法的实现可分为6个部分,如下图所示:5.4.1 给定值和被控量处理一、给定值处理给定值处理包括:选择给定值SV给定值变化率限制SR操作员

14、设置的给定值上位计算机的给定值主调节模块的给定值选择内或外给定值状态选择外给定值来源(1)内给定状态软开关CL/CR切向CL位置,选择操作员设置的给定值SVL。(2)外给定状态软开关CL/CR切向CR位置,给定值来自上位计算机、主回路或运算模块。SCC控制(Supervisory Computer Control) 软开关CAS/SCC切向SCC位置,给定值SVS来自上位计算机,实现二级计算机控制。串级控制软开关CAS/SCC切向CAS位置,给定值SVC来自主回路,实现串级控制。(3)给定值变化率限制SR为减少给定值突变对控制系统的扰动,需对给定值变化率SR加以限制。二、被控量处理为安全运行,

15、需对被控量PV进行上下限报警处理,其原理如下图所示:为使PHA/PLA的状态频繁改变,可设置一定的报警死区(HY)。另外,还需对被控量的变化率PR加以限制。5.4.2 偏差处理偏差处理包括:计算偏差偏差报警非线性特性输入补偿偏差正反作用方式输入补偿量输入补偿方式一、计算偏差根据偏差正反作用方式计算偏差DV,即:二、偏差报警对控制要求较高的对象,除要设置被控量PV的上下限报警,对偏差也要设置报警。三、输入补偿根据输入补偿方式 ICM 状态,决定偏差DVC与输入补偿量ICV间的关系,即:四、非线性特性(略)5.4.3 控制算法的实现在自动状态下,按照要求各种控制算法的差分方程,计算控制量U,并进行

16、上下限限幅处理,如图所示:软开关选择不同的差分方程实现控制量限幅5.4.3 控制量处理控制量Un在输出前,一般还应做如图所示的处理和判断:一、输出补偿根据输出补偿方式OCM的状态,决定Un和输出补偿量OCV间的关系,如下:二、变化率限制通过对控制量的变化率MR的限制,选择适中的变化率。变化率过小,则控制动作过慢;变化率过大,则可能达不到控制的目的。三、输出保持软开关FH/NH切向NH位置时软开关FH/NH的状态一般来自系统安全报警开关。四、安全输出与输出保持类似,由软开关FS/NS实现。5.2 数字PID控制器算法的改进1. 带有死区的PID控制在控制精度要求不高的场合,能减少由于频繁动作引起

17、的振荡和能量消耗。控制算式和传递特性图分别为:数字PID控制器算法的改进2. PID位置算法中积分饱和的抑制在系统偏差较大时,控制PID 算法中积分项的作用,减少由于积分饱和引起的振荡和超调。(1)积分分离的PID控制数字PID控制器算法的改进(续)(2)遇限削弱积分法在实际控制中,控制量的大小总是受到执行机构的限制,而被限定在一定的范围内。因此该方法以此来决定是否引入积分控制和控制的方向。数字PID控制器算法的改进3. PID增量算法中比例和微分饱和的抑制控制偏差过大时,比例和微分饱和会使控制量超出实际范围,超出部分将不被执行,影响系统的动态性能。因此,实际操作中将超出部分存储累积,而当控制量在有效范围内时再将存储部分加入,达到补偿的效果。4. 修改微分项为了消除给定变化的冲击,在计算微分项时忽略给定变化的影响,即认为给定值不变。带一阶延迟滤波器的数字PID控制器算法为了抗高频干扰,数字控制系统中一般需要加入一阶延迟滤波器,也叫微分限制环节。其传递函数和对应的差分方程为:带一阶延迟滤波器的数字PID控制器算法(续)加入了一阶延迟滤波器后的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论