版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为,则甲获胜的概率为 ( )ABCD2已知双曲线与椭圆:有共同的焦点,它们的离心率之和为,则双曲线的标准方程为( )ABCD 3已知函数,且,则曲线在处的切线方程为( )
2、ABCD4下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A,xRB,xR且x0C,xRD,xR5在某项测量中测量结果,若X在内取值的概率为0.3,则X在内取值的概率为( )A0.2B0.4C0.8D0.96实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于( )ABCD7抛物线y2=4x的焦点为F,点A(3,2),P为抛物线上一点,且P不在直线AF上,则PAF周长的最小值为( )A4B5CD8甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3
3、胜制还是7局4胜制对乙更有利?( )A5局3胜制B7局4胜制C都一样D说不清楚9设函数可导,则等于( )A B C D10西游记三国演义水浒传和红楼梦是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过西游记或红楼梦的学生共有90位,阅读过红楼梦的学生共有80位,阅读过西游记且阅读过红楼梦的学生共有60位,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为( )ABCD11二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.则由四维空间中“超球”的三维
4、测度,猜想其四维测度( )ABCD12设,则“,且”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知是抛物线上的一点,过点的切线方程的斜率可通过如下方式求得在两边同时求导,得:,则,所以过的切线的斜率.试用上述方法求出双曲线在处的切线方程为_.14湖面上有个相邻的小岛,现要建座桥梁,将这个小岛连接起来,共有_不同方案(用数字作答)15若C5x=C16若直线与直线与直线互相垂直,则实数=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)解关于的不等式.18(12分)已知函数当时,求在
5、上的值域;若方程有三个不同的解,求b的取值范围19(12分)已知函数.()求函数的解析式;()求函数的单调区间.20(12分)在平面四边形中,、分、所成的比为,即,则有:. (1)拓展到空间,写出空间四边形类似的命题,并加以证明;(2)在长方体中,、分别为、的中点,利用上述(1)的结论求线段的长度;(3)在所有棱长均为平行六面体中,(为锐角定值),、分、所成的比为,求的长度.(用,表示)21(12分)已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,bR)是复平面上的四个点,且向量对应的复数分别为z1,z2.(1)若z1+z2=1+i,求z1,z2;(2)若|z1+z2|=2,
6、z1-z2为实数,求a,b的值.22(10分)已知函数,(其中为自然对数的底数,).(1)当时,求函数的极值;(2)若函数在区间上单调递增,求的取值范围;(3)若,当时,恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为,若前两局都是甲赢,所求概率为,因此
7、,甲获胜的概率为,故选C【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题2、C【解析】由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案【详解】由椭圆,得,则,双曲线与椭圆的焦点坐标为,椭圆的离心率为,则双曲线的离心率为设双曲线的实半轴长为m,则,得,则虚半轴长,双曲线的方程是故选C【点睛】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题3、B【解析】先对已知函数f(x)求导,由可得a的值,由此确
8、定函数和其导函数的解析式,进而可得x=0处的切线方程。【详解】,解得,即,则,曲线在点处的切线方程为,即.【点睛】本题考查求函数某点处的切线方程,解题关键是先由条件求出函数f(x)中的未知量a。4、B【解析】首先判断奇偶性:A,B为偶函数,C为奇函数,D既不是奇函数也不是偶函数,所以排除C、D,对于先减后增,排除A,故选B.考点:函数的奇偶性、单调性.5、C【解析】由题意结合正态分布的对称性求解在(0,+)内取值概率即可.【详解】由正态分布的性质可知正态分布的图象关于直线对称,则,,即在(0,+)内取值概率为0.8.本题选择C选项.【点睛】关于正态曲线在某个区间内取值的概率求法熟记P(X),P
9、(2X2),P(3X3)的值充分利用正态曲线的对称性和曲线与x轴之间面积为1.6、B【解析】试题分析:实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.考点:独立事件概率计算.7、C【解析】求周长的最小值,即求的最小值,设点在准线上的射影为点,则根据抛物线的定义,可知,因此问题转化为求的最小值,根据平面几何知识,当、三点共线时,最小,即可求出的最小值,得到答案。【详解】由抛物线为可得焦点坐标,准线方程为:,由题可知求周长的最小值,即求的最小值,设点在准线上的射影为点,则根据抛物线的定义,可知,因此求的最小值即求的最小值,根据平面几何知
10、识,当、三点共线时,最小,所以又因为,所以周长的最小值为,故答案选C【点睛】本题考查抛物线的定义,简单性质的应用,判断出、三点共线时最小,是解题的关键,属于中档题。8、A【解析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案.【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:,显然采用5局3胜制对乙更有利,故选A.【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.9、C【解析】,故选C.10、C【解析】根据
11、题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过西游记的学生人数为90-80+60=10,则其与该校学生人数之比为10100=0.1故选C【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养采取去重法,利用转化与化归思想解题11、A【解析】因为,由此类比可得,从而可得到结果.【详解】因为二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.所以由四维空间中“超球”的三维测度,猜想其四为测度W,应满足 ,又因为,所以,故选A.【点睛】本题主要考查类比推理以及导数的计算.12、A【解析】分析:由题意逐一考查充
12、分性和必要性即可.详解:若“,且”,有不等式的性质可知“”,则充分性成立;若“”,可能,不满足“,且”,即必要性不成立;综上可得:“,且”是“”的充分不必要条件.本题选择A选项.点睛:本题主要考查充分不必要条件的判定及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:结合题中的方法类比求解切线方程即可.详解:用类比的方法对两边同时求导得,切线方程为,整理为一般式即:.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义
13、的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.14、135【解析】分析:个相邻的小岛一共可座桥梁,选座,减去不能彼此连接的即可。详解:个相邻的小岛一共可座桥梁,选座不能彼此连接,共135种。点睛:转化问题为组合问题。15、2或3【解析】根据组合数的性质得解.【详解】由组合数的性质得x=2或x+2=5,所以x=2或x=3.【点睛】本题考查组合数的性质,属于基础题.16、【解析】:,即三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、当时,不等式的
14、解集为;当时,不等式的解集为或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【解析】将原不等式因式分解化为,对参数分5种情况讨论:,分别解不等式【详解】解:原不等式可化为,即,当时,原不等式化为,解得,当时,原不等式化为,解得或,当时,原不等式化为.当,即时,解得;当,即时,解得满足题意;当,即时,解得.综上所述,当时,不等式的解集为;当时,不等式的解集为或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【点睛】本题考查含参不等式的求解,求解时注意分类讨论思想的运用,对分类时要做到不重不漏的原则,同时最后记得把求得的结果进行综合表述.18、12【解析】
15、(1)求导得到函数的单调性,利用单调性确定最值取得的点,从而得到值域;(2)将问题转化成与有三个交点的问题,通过求导得到图象,通过图象可知只需位于极大值和极小值之间即可,从而得到不等式,求解出范围.【详解】(1)当时,则令,解得或列表如下;由表可知,在上的最小值为,最大值为所以在的值域是(2)由,得设,则由,解得:由,解得:或所以在递减;在,递增所以极大值为:;极小值为:,画出的图象如图所示;有三个不同解与有三个不同交点结合图形知,解得:,所以方程有三个不同的解时,的取值范围是【点睛】本题考查利用导数研究函数的单调性、极值和最值问题以及导数问题中的根的个数问题.解决根的个数类问题的关键在于能够
16、将问题变成曲线和平行于轴直线的交点个数问题,从而利用导数得到函数图象,结合图象得到相应的关系.19、 ();()单调递增区间是,单调递减区间是.【解析】分析:(1)换元法,进而得到表达式;(2),结合图像得到单调区间.详解:()令,即函数解析式为.()由()知,结合函数的图像得到,函数的单调递增区间是,函数的单调递减区间是.点睛:这个题目考查了函数的解析式的求法,求函数解析式一定注意函数的定义域;常见方法有:换元法,构造方程组法,配方法等;考查了绝对值函数的性质,一般先去掉绝对值,结合图像研究函数性质.20、(1)命题同题干,证明见解析;(2);(3)【解析】(1)由条件可得,利用向量的线性运
17、算证明即可;(2)由(1)的结论可得,两边同时平方计算可得结果;(3)由(1)的结论可得,两边同时平方计算可得结果.【详解】(1)在空间四边形中,、分、所成的比为,即,则有:.证明:;(2)由(1)的结论可得,;(3)如图:与所成的角为,又由(1)的结论可得,.【点睛】本题考查空间向量的线性运算,数量积的运算及模的运算,考查学生计算能力,是中档题.21、(1);(2)【解析】(1)向量对应的复数分别为,利用,即可得出;(2)为实数,可得,即可得出结论.【详解】(1)=(a-1,-1),=(-3,b-3),z1=(a-1)-i,z2=-3+(b-3)i,z1+z2=(a-4)+(b-4)i=1+
18、i,a-4=1,b-4=1,解得a=b=5,z1=4-i,z2=-3+2i.(2)|z1+z2|=2,z1-z2为实数,z1+z2=(a-4)+(b-4)i,z1-z2=(a+2)+(2-b)i,=2,2-b=0,a=4,b=2.【点睛】本题主要考查复数的几何意义,复数的模以及复数与向量的综合应用,属于中档题. 复数的模的几何意义是复平面内两点间的距离,所以若,则表示点与点的距离.22、(1)极大值为-1,最小值为(2)(3)【解析】(1)当时,利用函数导数,求得函数的单调区间,并求出极大值和极小值.(2)对求导后,令导数大于或等于零,对分成三类,讨论函数的单调区间,由此求得取值范围.(3)构造函数,利用导数求得函数的最小值,令这个最小值大于或等于零,解不等式来求得的取值范围.【详解】解:(1)当时, 当或时,函数在区间,上单调递增;当时,函数在区间上单调递减. 所以当时,取得极大值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论