版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1从名学生志愿者中选择名学生参加活动,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下
2、的人再按系统抽样的方法抽取人,则在人中,每人入选的概率( )A不全相等B均不相等C都相等,且为D都相等,且为2若为纯虚数,则实数的值为( )A-2B2C-3D33已知各棱长均相等的正三棱锥、正四棱锥、正五棱锥的侧面与底面所成角的大小分别为,则( )ABCD前三个答案都不对4设,满足约束条件则的最大值为( )ABCD5定义在上的函数为偶函数,记,则( )ABCD6已知集合,则下列判断正确的是( )ABCD7曲线对称的曲线的极坐标方程是( )ABCD8直三棱柱中,、分别为、的中点,则异面直线与所成角的余弦值为( )ABCD9设正项等差数列an的前n项和为Sn,若S2019A1B23C13610已知
3、定义在R上的奇函数,满足,且在上是减函数,则( )ABCD11已知复数满足,则其共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限12德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f(x)由右表给出,则的值为()A0B1C2D3二、填空题:本题共4小题,每小题5分,共20分。13已知是以为直径的半圆弧上的动点,为圆心,为中点,若,则_14已知正整数
4、n,二项式的展开式中含有的项,则n的最小值是_15函数的最小值是_16在中,已知,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论函数在上的单调性;(2)当时,若时,求证:.18(12分)从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望19(12分)已知圆圆心为,定点,动点在圆上,线段的垂直平分线交线段于点求动点的轨迹的方程;若点是曲线上一点,且,求的面积20(12分)2018年
5、6月19日凌晨某公司公布的年中促销全天交易数据显示,天猫年中促销当天全天下单金额为1592亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了6月18日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.网购金额(元)频数频率50.05150.15250.25300.3 合计1001 ()先求出的值,再将图中所示的频率分布直方图绘制完整;()对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断
6、能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?网龄3年以上网龄不足3年总计购物金额在2000元以上35购物金额在2000元以下20总计100参考数据:0.150.100.050.0250.0100.0050.0012.0722.0763.8415.0246.6357.87910.828参考公式:其中.()从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在和两组所抽中的8人中再随机抽取2人各奖励1000元现金,求组获得现金奖的数学期望.21(12分)(1)求方程的非负整数解的个数;(2)某火车站共设有4个“安检”入口,
7、每个入口每次只能进1个旅客求个小组4人进站的不同方案种数,要求写出计算过程.22(10分)从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量,求:(1)的分布列;(2)所选女生不少于2人的概率.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断出每个人入选的概率.【详解】在系统抽样中,若所给的总体个数不能被样本容量整除时,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,所以,每个个体被抽到包括两个过程,一是不被剔除,二
8、是选中,这两个过程是相互独立的,因此,每个人入选的概率为.故选:D.【点睛】本题考查简单随机抽样和系统抽样方法的应用,也考查了概率的意义,属于基础题.2、C【解析】本题首先可以确定复数的实部和虚部,然后根据纯虚数的相关性质即可列出方程组,通过计算即可得出结果【详解】因为为纯虚数,所以,解得,故选C【点睛】本题考查复数的相关性质,主要考查纯虚数的相关性质,纯虚数的实部为0且虚部不为0,考查运算求解能力,考查方程思想,是简单题3、C【解析】通过作出图形,分别找出正三棱锥、正四棱锥、正五棱锥的侧面与底面所成角,通过计算余弦值比较大小即可知道角度大小关系.【详解】如图,正三棱锥,正四棱锥,正五棱锥,设
9、各棱长都为2,在正三棱锥中,取AC中点D,连接PD,BD,可知即为侧面与底面所成角,可知,由余弦定理得;同理,于是,而由于为锐角,所以,故选C.【点睛】本题主要考查面面角的相关计算,意在考查学生的转化能力,空间想象能力,计算能力,难度中等.4、C【解析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可【详解】画出约束条件所表示的平面区域,如图所示,由得到,平移直线,当过A时直线截距最小,最大,由 得到,所以的最大值为,故选:C【点睛】本题主要考查简单线性规划求解目标函数的最值问题其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答
10、的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题5、C【解析】分析:根据f(x)为偶函数便可求出m=0,从而f(x)=,这样便知道f(x)在0,+)上单调递减,根据f(x)为偶函数,便可将自变量的值变到区间0,+)上:,然后再比较自变量的值,根据f(x)在0,+)上的单调性即可比较出a,b,c的大小详解:f(x)为偶函数,f(x)=f(x).,|xm|=|xm|,(xm)2=(xm)2,mx=0, m=0.f(x)=f(x)在0,+)上单调递减,并且, ,c=f(0),0log21.51,故答案为C点睛:(1)本题主要考查函数的奇偶性和单调性,考查对数函数的性质,意在考查学生对这些
11、基础知识的掌握能力和分析推理能力. (2)解答本题的关键是分析出函数f(x)=的单调性,此处利用了复合函数的单调性,当x0时,是增函数,是减函数,是增函数,所以函数是上的减函数.6、C【解析】先分别求出集合A与集合B,再判别集合A与B的关系,得出结果.【详解】, 【点睛】本题考查了集合之间的关系,属于基础题.7、A【解析】先把两曲线极坐标方程化为普通方程,求得对称曲线,再转化为极坐标方程。【详解】化为标准方程可知曲线为,曲线为,所以对称直线为,化为极坐标方程为,选A.【点睛】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。8、B【解析】以为原点,为轴,为轴,为轴,建
12、立空间直角坐标系,利用向量法能求出异面直线与所成角的余弦值.【详解】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则、,、,设异面直线与所成角为,则,异面直线与所成角的余弦值为.故选:B【点睛】本题考查了空间向量法求异面直线所成的角,解题的关键是建立恰当的坐标系,属于基础题.9、D【解析】先利用等差数列的求和公式得出S2019=2019a1+a20192=6057【详解】由等差数列的前n项和公式可得S2019=2019由等差数列的基本性质可得a261所以,1a2+4a因此,1a2+4【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定
13、值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。10、D【解析】根据条件,可得函数周期为4,利用函数期性和单调性之间的关系,依次对选项进行判断,由此得到答案。【详解】因为,所以,可得的周期为4,所以,.又因为是奇函数且在上是减函数,所以在上是减函数,所以,即,故选D.【点睛】本题主要考查函数值的大小比较,根据条件求出函数的周期性,结合函数单调性和奇偶性之间的关系是解决本题的关键。11、B【解析】分析:先求出z,然后根据共轭复数定义结合复数坐标写法即可.详解:由题可知:,所以所对应的坐标为(-1,1),故在第二象限,选B.点睛:考查复数的除法运算,复数的坐标表示,属于基础题.12、D【
14、解析】采用逐层求解的方式即可得到结果.【详解】,则,又,故选D【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先用中点公式的向量式求出,再用数量积的定义求出的值【详解】,【点睛】本题主要考查向量中的中点公式应用以及数量积的定义14、4.【解析】分析:根据二项式呃展开式得到第r+1项为,对r,n赋值即可.详解:二项式的展开式中第r+1项为 则,当r=1时,n=4。故答案为:4.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决
15、这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.15、1【解析】换元将原式化为:进而得到结果.【详解】令,则,所以,即所求最小值为1.故答案为:1.【点睛】这个题目考查了对数型的复合函数的最值问题,研究函数最值一般先从函数的单调性入手,而复合函数的单调性,由内外层共同决定.16、0【解析】通过展开,然后利用已知可得,于是整理化简即可得到答案.【详解】由于,因此,所以,即,所以,则,故答案为0.【点睛】本题主要考查三角函数诱导公式的运用,意在考查学生的基础知识,难度中等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,函数在上单调递增;当时,函数在上单调递减
16、;当时,函数在上单调递增,在上单调递减;(2)证明见解析.【解析】(1)对求导后讨论的范围来判断单调性;(2)构造函数,借助得到,设,使得,设,根据该函数性质即可证明【详解】(1)由题意可知,(i)当时,恒成立,所以函数在上单调递增;(ii)当时,令,得,当,即时,在上恒成立,所以函数在上单调递减;当,即时,在上,函数在上单调递增;在上,函数在上单调递减.综上所述,当时,函数在上单调递增;当时,函数在上单调递减;当时,函数在上单调递增,在上单调递减.(2)证明:令,由题意可得,不妨设.所以,于是.令,则,.令,则,在上单调递增,因为,所以,且,所以,即.【点睛】本题考察(1)用分类讨论的方法判
17、断函数单调性;(2)多变量不等式要先化为单变量不等式,利用综合法证明猜想18、(1);(2)的分布列为1234【解析】(I)(II);X的分布列为X1234P点评:对于古典概型的问题,主要是理解试验的基本事件空间,以及事件发生的基本事件空间利用比值来求解概率,结合排列组合的知识得到而分布列的求解关键是对于各个概率值的求解,属于中档题19、;.【解析】由已知,故,即点轨迹是以、为焦点的椭圆,根据,得出椭圆方程;由知,又因为,得出,进而求出,算出面积即可.【详解】由已知,故点轨迹是以、为焦点的椭圆.设其方程为则即,又,故点的轨迹的方程为: 由知.又.有,【点睛】本题考查椭圆得方程求法,余弦定理,三
18、角形面积公式的应用,属于中档题.20、 ()见解析; ()在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关()1.【解析】()由题意可知2000元以上(不含2000元)的频率为0.4,所以网购金额在(2500,3000的频率为0.40.3=0.1,由此再结合频率分布直方图与频率分布表可分别求得的值。再由数据补全频率分布直方图。()先补全22列联表,由表中数据求得K2。()在(2000,2500组获奖人数X为0,1,2,求得概率及期望。【详解】()因为网购金额在2000元以上(不含2000元)的频率为0.4,所以网购金额在(2500,3000的频率为0.40.3=0.1,即q=0.1,且y=1000.1=10,从而x=15,p=0.15,相应的频率分布直方图如图2所示 ()相应的22列联表为:由公式K2=,因为5.565.024,所以据此列联表判断,在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关 ()在(2000,2500和(2500,3000两组所抽出的8人中再抽取2人各奖励1000元现金,则(2000,2500组获奖人数X为0,1,2,且 ,故(2000,2500组获得现金奖的数学期望+1000+2000=1【点睛】本题综合考查频数分布表、频率分布直方图、补全22列联表、卡方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45026-2024侧扫声呐海洋调查规范
- 2024版消防工程协议外施工补充协议书版B版
- 2025年度企业HSE内部审计与改进合同3篇
- 2024版短期架桥机租赁协议
- 二零二五年度高端品牌服装企业集中采购合作协议3篇
- 二零二五年度高科技园区土地承包经营合同2篇
- 2024年矿山岩石开采作业与施工责任协议版B版
- 二零二五版婚姻财产协议书明确夫妻财产分配细则3篇
- 二零二五年度智慧农业项目设备采购与农技支持合同3篇
- 632项目2024年度技术服务协议版B版
- JJF 2122-2024 机动车测速仪现场测速标准装置校准规范
- 充电桩四方协议书范本
- 2024年南京铁道职业技术学院单招职业技能测试题库及答案解析
- 2023年信息处理技术员教程
- 稽核管理培训
- 电梯曳引机生锈处理方案
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
评论
0/150
提交评论