2022届安徽省池州市 高二数学第二学期期末经典模拟试题含解析_第1页
2022届安徽省池州市 高二数学第二学期期末经典模拟试题含解析_第2页
2022届安徽省池州市 高二数学第二学期期末经典模拟试题含解析_第3页
2022届安徽省池州市 高二数学第二学期期末经典模拟试题含解析_第4页
2022届安徽省池州市 高二数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,分别表示甲、

2、乙两名运动员这项测试成绩的标准差,则有( )ABCD2已知正三棱锥的外接球的半径为,且满足则正三棱锥的体积为()ABCD3学校新入职的5名教师要参加由市教育局组织的暑期3期上岗培训,每人只参加其中1期培训,每期至多派2人,由于时间上的冲突,甲教师不能参加第一期培训,则学校不同的选派方法有( )A种B种C种D种4某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A0.8B0.75C0.6D0.455已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD6九章算术中有如下问题:

3、“今有勾五步,股一十二步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 ( )ABCD7将曲线y=sin2x按照伸缩变换后得到的曲线方程为( )ABCD8函数在的图象大致为( )ABCD9命题若,则,是的逆命题,则( )A真,真B真,假C假,真D假,假10在各项都为正数的等差数列an中,若a1+a2+a10=30,则a5a6的最大值等于()A3 B6 C9 D3611设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A函数有极大值和极小值B

4、函数有极大值和极小值C函数有极大值和极小值D函数有极大值和极小值12与椭圆共焦点且过点的双曲线方程是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13命题“如果,那么且”的逆否命题是_14已知函数(),若对,都有恒成立,记的最小值为,则的最大值为_.15已知函数在上是减函数,则实数的取值范围是_.16已知点均在表面积为的球面上,其中平面,则三棱锥的体积的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,四边形为平行四边形,平面,.(1)求证:平面;(2)求二面角的余弦值.18(12分)选修4-5:不等式选讲设函数的最大值为(

5、1)求;(2)若,求的最大值19(12分)是指悬浮在空气中的空气动力学当量直径小于或等于微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准,日均值在微克/立方米以下,空气质量为一级;在微克应立方米微克立方米之间,空气质量为二级:在微克/立方米以上,空气质量为超标.从某市年全年每天的监测数据中随机地抽取天的数据作为样本,监测值频数如下表:日均值(微克/立方米)频数(天)(1)从这天的日均值监测数据中,随机抽出天,求恰有天空气质量达到一级的概率;(2)从这天的数据中任取天数据,记表示抽到监测数据超标的天数,求的分布列.20(12分)已知复数,(其中是虚数单位).(1)当为实数时,求实数的值;(2)

6、当时,求的取值范围.21(12分)十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量X(单位:吨)的历史统计数据,得到如下频率分布表:将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立(1)求在未来3年里,至多1年污水排放量的概率;(2)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当X310,350)时,经济损失为60万元为减少损失,现有三种应对方案:方案一:防治350吨的污水排放,每年需要防治费3.8万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施试比较上述三种方案,哪种方案好,

7、并请说明理由22(10分)已知函数(1)当时,解不等式;(2)若存在实数解,求实数a取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等甲的方差是乙的方差是甲的标准差小于乙的标准差,故选B【点睛】本题考查两组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越

8、稳定2、A【解析】根据判断出为等边三角形的中心,由此求得正三棱锥的底面积和高,进而求得正三棱锥的体积.【详解】由于三棱锥是正三棱锥,顶点在底面的射影是底面中心.由可知,为等边三角形的中心,由于正三棱锥的外接球的半径为,故由正弦定理得,且正三棱锥的高为球的半径,故正三棱锥的体积为.所以本小题选A.【点睛】本小题主要考查正三棱锥的几何性质,考查向量加法运算,考查几何体外接球有关问题的求解,属于中档题.3、B【解析】由题意可知这是一个分类计数问题.一类是:第一期培训派1人;另一类是第一期培训派2人,分别求出每类的选派方法,最后根据分类计数原理,求出学校不同的选派方法的种数.【详解】解:第一期培训派1

9、人时,有种方法, 第一期培训派2人时,有种方法,故学校不同的选派方法有,故选B.【点睛】本题考查了分类计数原理,读懂题意是解题的关键,考查了分类讨论思想.4、A【解析】试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,所以,故选A.考点:条件概率5、D【解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.6、C【解

10、析】本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错

11、误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误7、B【解析】根据反解,代入即可求得结果.【详解】由伸缩变换可得:代入曲线,可得: ,即.故选: .【点睛】本题考查曲线的伸缩变换,属基础题,难度容易.8、C【解析】,为偶函数,则B、D错误;又当时,当时,得,则则极值点,故选C点睛:复杂函数的图象选择问题,首先利用对称性排除错误选项,如本题中得到为偶函数,排除B、D选项,在A、C选项中,由图可知,虽然两个图象在第一象限都是先增后减,但两个图象的极值点位置不同,则我们采取求导来判断极值点的位置,进一步找出正确图象9、C【解析】由题意,所以,得,所以命题为假命题,又因为是的

12、逆命题,所以命题:若,则为真命题,故选C.10、C【解析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5a6的最大值等于9,故选C考点:1、等差数列;2、基本不等式11、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减12、A【解析】由椭圆方程可得焦点坐标为,设与其共焦点的双曲线方程为:,双曲线过点,则:,整理可得:,结合可得:,则双曲线方程为:.本题选择A选项.二、填空题:本题共4小题,每小题5分,共20分。13、如果 或 ,则 【解析】由四种命

13、题之间的关系,即可写出结果.【详解】命题“如果,那么且”的逆否命题是“如果 或 ,则 ”.故答案为:如果 或 ,则 【点睛】本题主要考查四种命题之间的关系,熟记概念即可,属于基础题型.14、【解析】运用转化思想将题目转化为,求出的表达式,运用导数求出结果【详解】由题意可得,恒成立,解得,即为满足题意,当直线与曲线相切时成立不妨设切点,切线方程为,令,当时,是增函数当时,是减函数则故答案为【点睛】本题考查了函数综合,化归转化思想,消元思想,根据题意将其转化为问题,由相切求出,将二元问题转化为一元问题,然后利用导数求出最值,有一定难度,需要仔细缜密审题,理清题意15、【解析】在上是减函数的等价条件

14、是在恒成立,然后分离参数求最值即可.【详解】在上是减函数, 在恒成立,即, 在的最小值为, 【点睛】本题主要考查利用导函数研究含参函数的单调性问题,把在上是减函数转化为在恒成立是解决本题的关键.16、【解析】分析:先求出球的半径,再求出三棱锥的体积的表达式,最后求函数的最大值.详解:设球的半径为R,所以设AB=x,则,由余弦定理得设底面ABC的外接圆的半径为r,则所以PA=.所以三棱锥的体积=.当且仅当x=时取等.故答案为点睛:(1)本题主要考查球的体积和几何体的外接球问题,考查基本不等式,意在考查学生对这些基础知识的掌握能力和空间想象能力.(2)三元基本不等式:,当且仅当a=b=c0时取等.

15、(3)函数的思想是高中数学的重要思想,一般是先求出函数的表达式,再求函数的定义域,再求函数的最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)由题意知为,利用等腰三角形三线合一的思想得出,由平面可得出,再利用直线与平面垂直的判定定理可得出平面;(2)以点为坐标原点,、所在直线分别为轴、轴建立空间直角坐标系,计算出平面和平面的法向量,然后利用空间向量法计算出二面角的余弦值.【详解】(1)因为四边形是平行四边形,所以为的中点.又,所以.因为平面,平面,所以.又,平面,平面,故平面;(2)因为,以为原点建立空间直角坐标系如下图所示,设,则、,

16、所以,设平面的一个法向量为,则,所以,得,令,则,所以.同理可求得平面的一个法向量,所以.又分析知,二面角的平面角为锐角,所以二面角的余弦值为.【点睛】本题考查直线与平面垂直的判定,同时也考查了二面角的计算,解题的关键在于建立空间直角坐标系,利用空间向量法来求解,考查推理能力与计算能力,属于中等题.18、(1);(2)1【解析】试题分析:(1)根据绝对值的几何意义去绝对值,将函数转化为分段函数,得到,可以根据函数单调性,或者画出分段函数的图象,可以得出函数的最大值为2;(2)由第(1)问可知,所以条件变为,若想求的最大值,可以令,则可以根据基本不等式,当且仅当时等号成立,所以,即,所以,当且仅

17、当时等号成立,所以的最大值为1试题解析:(1)当时,;当时,;当时,所以当时,取得最大值(2)因为,所以当且仅当时取等号,此时取得最大值1考点:1绝对值不等式;2基本不等式19、(1);(2)分布列见解析.【解析】(1)由表格可知:这天的日均值监测数据中,只有天达到一级,然后利用组合计数原理与古典概型的概率公式可计算出所求事件的概率;(2)由题意可知,随机变量的可能取值有、,然后利用超几何分布即可得出随机变量的分布列.【详解】(1)由表格可知:这天的日均值监测数据中,只有天达到一级随机抽取天,恰有天空气质量达到一级的概率为;(2)由题意可知,随机变量的可能取值有、,.因此,随机变量的分布列如下

18、表所示:【点睛】本题考查了概率的计算,同时也考查了超几何分布及其分布列等基础知识与基本技能,属于中档题20、 (1)1;(2).【解析】试题分析:(1)整理计算,满足题意时,即.(2)由题意结合复数的模的定义和二次函数的性质可得的取值范围是.试题解析:(1),所以,当为实数时,即.(2)因为,所以,又因为,所以当时,当时,.所以.21、 (1) .(2) 采取方案二最好,理由见解析.【解析】(1)设在未来3年里,河流的污水排放量的年数为,由题意可知,据此计算可得满足题意的概率值为.(2)由题意结合各个方案的数学期望,比较计算可得三种方案中方案二的平均损失最小,所以采取方案二最好.【详解】(1)由题得,设在未来3年里,河流的污水排放量的年数为,则.设事件“在未来3年里,至多有一年污水排放量”为事件,则 .在未来3年里,至多1年污水排放量的概率为.(2) 方案二好,理由如下:由题得,.用分别表示方案一、方案二、方案三的经济损失.则万元.的分布列为:.的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论