2021-2022学年福建厦门灌口中学数学高二第二学期期末经典模拟试题含解析_第1页
2021-2022学年福建厦门灌口中学数学高二第二学期期末经典模拟试题含解析_第2页
2021-2022学年福建厦门灌口中学数学高二第二学期期末经典模拟试题含解析_第3页
2021-2022学年福建厦门灌口中学数学高二第二学期期末经典模拟试题含解析_第4页
2021-2022学年福建厦门灌口中学数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1f(x)是定义在(0,)上的单调增函数,满足f(xy)f(x)f(y),f(3)1,当f(x

2、)f(x8)2时,x的取值范围是()A(8,)B(8,9C8,9D(0,8)2二项式的展开式中的系数为,则( )ABCD23两个线性相关变量x与y的统计数据如表:x99.51010.511y1110865其回归直线方程是,则相对应于点(11,5)的残差为( )A0.1B0.2C0.1D0.24已知,则的展开式中,项的系数等于( )A180B-180C-90D155一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为( )A4B8C16D246已知函数,在区间内任取两个实数,且,若不等式恒成立,则实数的取值范围是ABCD7某人射击一次命中目标的概率为,则此人射击6次,3次命中

3、且恰有2次连续命中的概率为( )ABCD8若“”是“不等式成立”的一个充分不必要条件,则实数的取值范围是( )ABCD9某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图,若用样本估计总体,年龄在内的人数占公司总人数的百分比是(精确到)( )ABCD10一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是ABCD11若是虚数单位,则实数( )ABC2D312如图,已知电路中4个开关闭合的概率都是,且是互相独立的,灯亮的概率为( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知向量满足:,当取最大值时,

4、 _14若存在两个正实数,使得不等式成立,其中为自然对数的底数,则实数的取值范围是_.15若随机变量,则,.已知随机变量,则_16计算_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某周末,郑州方特梦幻王国汇聚了八方来客. 面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同. 某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查. 调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人. (1)根据题意,请将下面的列联表填写完整;(2)根

5、据列联表的数据,判断是否有99%的把握认为选择哪个主题公园与年龄有关. 附参考公式与表:. 18(12分)已知函数为常数,且)有极大值,求的值19(12分)命题p:关于x的不等式对一切恒成立; 命题q:函数在上递增,若为真,而为假,求实数的取值范围。20(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表. 表1,设备改造后样本的频数分布表:质量指标值频数2184814162(1)请估计该企业在设备改

6、造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在25,30)内的定为一等品,每件售价240元,质量指标值落在20,25)或30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.21(12分)已知函数.(1)讨论函数的单调性;(2)若不等式在时恒成立,求实数的取值范围;(3)当时,证明:22(10分)已知 展开式中的

7、倒数第三项的系数为45,求:(1)含的项;(2)系数最大的项参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】令x=y=3,利用f(3)=1即可求得f(1)=2,由f(x)+f(x8)2得fx(x8)f(1),再由单调性得到不等式组,解之即可【详解】f(3)=1,f(1)=f(33)=f(3)+f(3)=2;函数f(x)是定义在(0,+)上的增函数,f(xy)=f(x)+f(y),f(1)=2,f(x)+f(x8)2fx(x8)f(1),解得:8x1原不等式的解集为:(8,1故选:B【点睛】本题考查抽象函数及其应用,着重

8、考查赋值法与函数单调性的应用,考查解不等式组的能力,属于中档题2、A【解析】利用二项式定理的展开式可得a,再利用微积分基本定理即可得出【详解】二项式(ax+)6的展开式中通项公式:Tr+2=(ax)r,令r=2,则T6=a2x2x2的系数为,a2=,解得a=2则x2dx=x2dx=故选:A【点睛】用微积分基本定理求定积分,关键是求出被积函数的原函数此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加3、B【解析】求出样本中心,代入回归直线的方程,求得,得出回归直线的方程,令,解得,进而求解相应点的残差,得到答案.【

9、详解】由题意,根据表中的数据,可得,把样本中心代入回归方程,即,解得,即回归直线的方程为,令,解得,所以相应点的残差为,故选B.【点睛】本题主要考查了回归直线方程的求解及应用,其中解答中正确求解回归直线的方程,利用回归直线的方程得出预测值是解答的关键,着重考查了运算与求解能力,属于基础题.4、B【解析】分析:利用定积分的运算求得m的值,再根据乘方的几何意义,分类讨论,求得xm2yz项的系数详解:3sinxdx=3cosx=3(coscos0)=6,则(x2y+3z)m=(x2y+3z)6 ,xm2yz=x4yz而(x2y+3z)6表示6个因式(x2y+3z)的乘积,故其中一个因式取2y,另一个

10、因式取3z,剩余的4个因式都取x,即可得到含xm2yz=x4yz的项,xm2yz=x4yz项的系数等于 故选:B点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等。5、B【解析】根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱与底垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,棱锥的体积,故选B.【点睛】本题利用空间几何体的三视图重点考查学

11、生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.6、B【解析】分析:首先,由的几何意义,得到直线的斜率,然后,得到函数图象上在区间(1,2)内任意两点连线的斜率大于1,从而得到f(x)=1 在(1,2)内恒成立分离参数后,转化成 a2x2+3x+1在(1,2)内恒成立从而求解得到a的取值范围详

12、解:的几何意义为:表示点(p+1,f(p+1) 与点(q+1,f(q+1)连线的斜率,实数p,q在区间(0,1)内,故p+1 和q+1在区间(1,2)内不等式1恒成立,函数图象上在区间(1,2)内任意两点连线的斜率大于1,故函数的导数大于1在(1,2)内恒成立由函数的定义域知,x1,f(x)=1 在(1,2)内恒成立即 a2x2+3x+1在(1,2)内恒成立由于二次函数y=2x2+3x+1在1,2上是单调增函数,故 x=2时,y=2x2+3x+1在1,2上取最大值为15,a15a15,+)故选A点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就

13、可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.7、C【解析】根据n次独立重复试验中恰好发生k次的概率,可得这名射手射击命中3次的概率,再根据相互独立事件的概率乘法运算求得结果.【详解】根据射手每次射击击中目标的概率是,且各次射击的结果互不影响,故此人射击6次,3次命中的概率为,恰有两次连续击中目标的概率为,故此人射击6次,3次命中且恰有2次连续命中的概率为.故选B【点睛】本题主要考查独立重复试验的概率问题,熟记概念和公式即可,属于常考题型.8、D【解析】由题设,解之得:或,又集合中元素是互异性可得,应选答案D。9、A【解析】求出样本平

14、均值与方差,可得年龄在内的人数有5人,利用古典概型概率公式可得结果.【详解】,年龄在内,即内的人数有5人,所以年龄在内的人数占公司总人数的百分比是等于,故选A.【点睛】样本数据的算术平均数公式 样本方差公式,标准差.10、B【解析】先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率【详解】解:一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,1从中任取2个球,基本事件为:1,2,1,3,1,4,1,5,1,1,2,3,2,4,2,5,2,1,3,4,3,5,3,1,4,5,4,1,5,1,共15个,而且

15、这些基本事件的出现是等可能的用A表示“两个球中有白球”这一事件,则A包含的基本事件有:1,5,1,1,2,5,2,1,3,5,3,1,4,5,4,1,5,1共9个,这2个球中有白球的概率是故选B【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题11、B【解析】先利用复数的模长公式得到,再根据复数相等的定义,即得解.【详解】由于由复数相等的定义,故选:B【点睛】本题考查了复数的模长和复数相等的概念,考查了学生概念理解,数学运算的能力,属于基础题.12、C【解析】灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中

16、的事件是相互独立的,根据概率公式得到结果【详解】由题意知,本题是一个相互独立事件同时发生的概率,灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,灯泡不亮的概率是,灯亮和灯不亮是两个对立事件,灯亮的概率是,故选:【点睛】本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【详解

17、】当且仅当与反向时取等号又 整理得: 本题正确结果:【点睛】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.14、【解析】由题意得,令m=(t2e)lnt,(t0),则,当xe时,mm(e)=0,当0 xe时,mm(e)=0,mm(e)=e,解得a0或.实数a的取值范围是(,0),+).15、0.8185【解析】分析:根据正态曲线的对称性和特殊区间上的概率可求出和,然后求出这两个概率的和即可详解:由题意得,点睛:本题考查正态分布,考查正态曲线的对称性和三个特殊区间上的概率,解题的关键是将所求概率合理地转化为特殊区间上的概率求解16、;

18、【解析】根据阶乘的定义:,计算得到答案.【详解】.【点睛】本题考查阶乘的计算,考查基本的运算求解能力,要求计算过程耐心、细心,才不会出错.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)没有99%的把握认为选择哪个主题公园与年龄有关【解析】(1)根据题目所给数据填写好列联表.(2)计算的观测值,由此判断“没有99%的把握认为选择哪个主题公园与年龄有关”.【详解】(1)根据题目中的数据,列出列联表如下:选择“西游传说”选择“千古蝶恋”总计成年人104050未成年人203050总计3070100(2)的观测值是. 因为,所以没有99%的把握认为选择哪个主题公

19、园与年龄有关.【点睛】本小题主要考查补全列联表,考查独立性检验的有关计算和运用,属于基础题.18、【解析】求导,解出导数方程的两根,讨论导数在这两个点左右两边导数的符号,确定极大值点,再将极大值点代入函数解析式,可求出实数的值【详解】,则,令,得,列表如下:极大值极小值所以,函数在处取得极大值,即,解得【点睛】本题考查利用导数求函数的极值,基本步骤如下:(1)求函数的定义域;(2)求导;(3)求极值点并判断导数在极值点附近的符号,确定极值点的属性;(4)将极值点代入函数解析式可求出极值19、【解析】依题意,可分别求得p真、q真时m的取值范围,再由pq为真,而pq为假求得实数a的取值范围即可【详

20、解】命题p:关于x的不等式x1+1ax+40对一切xR恒成立;若命题p正确,则(1a)1410,即1a1;命题q:函数f(x)logax在(0,+)上递增a1,pq为真,而pq为假,p、q一真一假,当p真q假时,有,1a1;当p假q真时,有,a1综上所述,1a1或a1即实数a的取值范围为(1,11,+)【点睛】本题考查复合命题的真假,分别求得p真、q真时m的取值范围是关键,考查理解与运算能力,属于中档题20、 (1) 30.2;(2)分布列见解析, 400.【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)的可能取值为:240, 300,360, 420, 4

21、80,根据直方图求出样本中一、二、三等品的频率分别为,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【详解】(1)样本的质量指标平均值为.根据样本质量指标平均值估计总体质量指标平均值为30.2 .(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为,故从所有产品中随机抽一件,是一、二、三等品的概率分别为,随机变量的取值为:240, 300,360, 420, 480,;,所以随机变量的分布列为:240300360420480.【点睛】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.21、(1)见解析;(2);(3)见解析【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论