2022届云南省曲靖市富源六中数学高二下期末考试模拟试题含解析_第1页
2022届云南省曲靖市富源六中数学高二下期末考试模拟试题含解析_第2页
2022届云南省曲靖市富源六中数学高二下期末考试模拟试题含解析_第3页
2022届云南省曲靖市富源六中数学高二下期末考试模拟试题含解析_第4页
2022届云南省曲靖市富源六中数学高二下期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设全集,集合,则( )ABCD2在复平面内,复数对应的点分别为.若为线段的中点,则点 对应的复数是( )ABCD

2、3若圆和圆相切,则等于( )A6B7C8D94甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D5甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为( )A0.42B0.12C0.18D0.286已知复数,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限7设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是( )ABCD8函数f(x)的图象大致为()AB

3、CD9函数在上单调递减,且为奇函数,若,则满足的的取值范围是( )ABCD10在等差数列中,如果,且,那么必有,类比该结论,在等比数列中, 如果,且,那么必有( )ABCD11设,则等于( )ABCD12已知,若,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若z是关于x的方程的一个虚数根,则的取值范围是_.14若的展开式中常数项为96,则实数等于_15某学校为了了解住校学生每天在校平均开销情况,随机抽取了名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图三所示,则其中每天在校平均开销在元的学生人数为_16已知幂函数的图象过点,则满足方

4、程的的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在点处的切线方程为,求的值;(2)若是函数的两个极值点,试比较与的大小.18(12分)已知函数.()若函数在处取得极值,求的值;()设,若函数在定义域上为单调增函数,求的最大整数值.19(12分)在各项均为正数的数列中,且.(1)当时,求的值;(2)求证:当时,.20(12分)某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如下表:年份(年)12345维护费(万元)1.11.51.82.22.4(

5、)求关于的线性回归方程;()若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由. (参考公式:.)21(12分)函数(为实数).(1)若,求证:函数在上是增函数;(2)求函数在上的最小值及相应的的值;(3)若存在,使得成立,求实数的取值范围.22(10分)在直角坐标系xOy中,直线l的参数方程为x=1+255ty=1+55t(t为参数),以()求直线l的普通方程和曲线C的直角坐标方程;()点P1,1,直线l与曲线C交于A,B两点,若PAPB参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个

6、选项中,只有一项是符合题目要求的。1、B【解析】求得,即可求得,再求得,利用交集运算得解.【详解】由得:或,所以,所以由可得:或所以所以故选:B【点睛】本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.2、C【解析】求出复数对应点的坐标后可求的坐标.【详解】两个复数对应的点坐标分别为,则其中点的坐标为,故其对应点复数为,故选:C.【点睛】本题考查复数的几何意义,注意复数对应的点是由其实部和虚部确定的,本题为基础题.3、C【解析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们

7、相内切,则圆心距等于半径之差,即|r5|,求得r18或8,不满足5r10.若它们相外切,则圆心距等于半径之和,即|r5|,求得r8或18(舍去),故选C【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题. 两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.4、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.5、B【解析】由两人考试相互独立和达到优秀的概率可得。【详解】所求概率为.故选B.【点睛】本题考查相互独立事件概率计算公式,属于基础题。6、D【解析】根据复数的运算法则,化简复数,再利用复数的表示,即可判定,得到答案.【详解】

8、由题意,复数,所以复数对应的点位于第四象限.故选D.【点睛】本题主要考查了复数的除法运算,以及复数的表示,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】利用函数的定义即可得到结果.【详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合我们可以通过代入和赋值的方法当f(1)=,0时,此时得到的圆心角为,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B【点睛】本题考查函数

9、的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).8、D【解析】根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(x)f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.9、C【解析】先由函数是奇函数求出,化原不等式为,再由函数的单调性,即可得出结果.【详解】因为为奇函数,若,则,所以不等式可化为,又在上单调递减,所以,解得.故选C【点睛】本题主要考查由函数的单调性与奇偶性解不等式,熟记函数基本性质即可,属于常考题型.10

10、、D【解析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论. 详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D. 点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:找出等差数列与等比数列之间的相似性或一致性;用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想). 11、C【解析】利用计算出定积分的值.【详解】依题意得,故选C.【点睛】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.12、B【解析】分析: 由定积分的几何意义求得定积分,在二项展开式中令

11、可求解详解:由积分的几何意义知,在中,令,则,故选B点睛:本题考查定积分的几何意义,考查二项式定理的应用在二项展开式中求与系数和有关的问题通常用赋值法根据所求和式的结构对变量赋予不同的值可得对应的恒等式如本题赋值,如果只求系数和,则赋值等等二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由判别式小于0求得m的范围,设za+bi(a,bR),利用根与系数的关系求得a值及b与m的关系,进一步求|z+1|,则答案可求【详解】解:由44(m28)0,解得m21设za+bi(a,bR),则2a2,a1,a2+b2m28,即b2m21|z+1|(a+1)+bi|2+bi|(2,+)故答案为:

12、(2,+)【点睛】本题考查实系数一元二次方程的虚根成对原理,考查复数模的求法,是基础题14、 【解析】的展开式的通项是 ,令 ,的展开式中常数项为可得 故答案为 .【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15、1【解析】分析:由频率分布直方图,得每天在校平均开销在50,60元的学生所点的频率为0.3,由此能求出每天在校平均开销在5

13、0,60元的学生人数详解:由频率分布直方图,得:每天在校平均开销在50,60元的学生所点的频率为:1(0.01+0.024+0.036)10=0.3每天在校平均开销在50,60元的学生人数为5000.3=1故答案为1点睛:本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,意在考查学生对这些基础知识的掌握能力. 16、1【解析】设,可得,解得,即可得出【详解】设,则,解得令,解得故答案为:1【点睛】本题考查了幂函数的定义、方程的解法,考查了推理能力与计算能力,属于容易题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1); (2).【解析】(1)先

14、求得切点的坐标,然后利用切点和斜率列方程组,解方程组求得的值.(2)将转化为只含有的式子.对函数求导,利用二次函数零点分布的知识求得的取值范围并利用韦达定理写出的关系式.化简的表达式,并利用构造函数法求得.用差比较法比较出与的大小关系.【详解】(1)根据题意可求得切点为,由题意可得,即,解得.(2),则.根据题意可得在上有两个不同的根.即,解得,且.令,则,令,则当时,在上为减函数,即,在上为减函数,即,又,即,.【点睛】本小题主要考查利用导数求解有关切线方程的问题,考查利用导数研究函数的极值点问题,难度较大.18、 (1) ;(2) 的最大整数值为2.【解析】分析:(1)先求导数,再根据根据

15、极值定义得 0,解得的值,最后列表验证.(2)先转化为恒成立,再利用结论(需证明),得,可得当时,恒成立;最后举反例说明当时,即不恒成立.详解:(),若函数在处取得极值,则,解得.经检验,当时,函数在处取得极值.综上,.()由题意知,.若函数在定义域上为单调增函数,则恒成立.先证明.设,则.则函数在上单调递减,在上单调递增.所以,即.同理,可证,所以,所以.当时,恒成立;当时,即不恒成立.综上所述,的最大整数值为2.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函

16、数最值问题.19、 (1) ;(2)证明见解析.【解析】(1)推导出,解得,从而,由此能求出的值;(2)利用分析法,只需证,只需证,只需证,根据基本不等式即可得到结果【详解】(1) ,解得,同理解得 即; (2) 要证 时,只需证,只需证,只需证,只需证,只需证, 根据基本不等式得,所以原不等式成立【点睛】本题考查实数值的求法,考查数列的递推公式、递推思想等基础知识,考查运算求解能力,是中档题20、(); ()见解析.【解析】()先算出,再由公式分别算,和线性回归方程。()分别算出五年与十年的每台设备的平均费用,费用越小越好。【详解】(1) , 所以回归方程为.()若满五年换一次设备,则由()

17、知每年每台设备的平均费用为:(万元),若满十年换一次设备,则由()知每年每台设备的平均费用大概为:(万元),因为,所以甲更有道理【点睛】求线性回归直线方程的步骤(1)用散点图或进行相关性检验判断两个变量是否具有线性相关关系;(2)求系数:公式有两种形式,即。当数据较复杂时,题目一般会给出部分中间结果,观察这些中间结果来确定选用公式的哪种形式求;(3)求:.;(4)写出回归直线方程21、(1)函数在上是增函数;(2)见解析;(3).【解析】试题分析:(1)当时,在(0,+)上恒成立,故函数在(1,+)上是增函数;(2)求导),当x1,e时,分,三种情况得到函数f(x)在1,e上是单调性,进而得到

18、f(x)min;(3)由题意可化简得到,令,利用导数判断其单调性求出最小值为试题解析:(1)当时,其定义域为,当时,恒成立,故函数在上是增函数.(2),当时,若,在上有(仅当,时,),故函数在上是增函数,此时;若,由,得,当时,有,此时在区间上是减函数;当时,有,此时,在区间上是增函数,故;若,在上有(仅当,时,),故函数在上是减函数,此时综上可知,当时,的最小值为1,相应的的值为1;当时,的最小值为,相应的值为;当时,的最小值为,相应的的值为.(3)不等式可化为,因为,所以,且等号不能同时取,所以,即,所以,令,则,当时,从而(仅当时取等号),所以在上为增函数,所以的最小值为,所以实数的取值范围为.点睛:不等式的存在问题即为不等式的有解问题,常用的方法有两个:一是,分离变量法,将变量和参数移到不等式的两边,要就函数的图像,找参数范围即可;二是,含参讨论法,此法是一般方法,也是高考的热点问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论