版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若随机变量服从正态分布,则( )附:,A13413B12718C11587D112282设函数f(x)=cos(x+),则下列结论错误的是Af(x)的一个周期为2By=f(x)的图像
2、关于直线x=对称Cf(x+)的一个零点为x=Df(x)在(,)单调递减3二项式的展开式中的系数为,则( )ABCD24已知奇函数在上是单调函数,函数是其导函数,当时,则使成立的的取值范围是()ABCD5从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有( )种.A36B30C12D66已知,则( )A16B17C32D337展开式中x2的系数为( )A15B60C120D2408设随机变量X的分布列如下:则方差D (X)()ABCD9已知等差数列中,则( )ABCD10设集合,则ABCD11某科研机构为了研究中年人秃头是否与患
3、有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:有心脏病无心脏病秃发20300不秃发5450根据表中数据得,由断定秃发与患有心脏病有关,那么这种判断出错的可能性为( )附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A0.1B0.05C0.01D0.00112已知分别为内角的对边,且成等比数列,且,则=( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13己知幂函数在上单调递减,则_.14某产品发传单的费用x与销售额y的统计数据如表所示:发传单的费用x万元1245销售额y万元10263549根
4、据表可得回归方程,根据此模型预报若要使销售额不少于75万元,则发传单的费用至少为_万元15为虚数单位,若复数是纯虚数,则实数_.16已知函数是定义在上的周期为的奇函数,时,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水
5、果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.18(12分)已知函数的定义域为,值域是.()求证: ;()求实数的取值范围.19(12分)已知函数,其中为实数.(1)求函数的单调区间;(2)若函数有两个极值点,求证:.20(12分)某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.(1)根据题
6、意,请将下面的列联表填写完整;选择“西游传说”选择“千古蝶恋”总计成年人未成年人总计(2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.附参考公式与表:().0.1000.0500.0250.0100.0012.7063.8415.0246.63510.82821(12分)如图,已知、两个城镇相距20公里,设是中点,在的中垂线上有一高铁站,的距离为10公里.为方便居民出行,在线段上任取一点(点与、不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到、两处.因地质条件等各种因素,其中快速路造价为1.5百万元/公里,快速路造价为1百万元/公里,快速路造价为2百万元/
7、公里,设,总造价为(单位:百万元).(1)求关于的函数关系式,并指出函数的定义域;(2)求总造价的最小值,并求出此时的值.22(10分)已知.(1)求不等式的解集;(2)若,恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据正态曲线的对称性,以及,可得结果.【详解】,故选:C【点睛】本题考查正态分布,重点把握正态曲线的对称性,属基础题.2、D【解析】f(x)的最小正周期为2,易知A正确;fcoscos31,为f(x)的最小值,故B正确;f(x)coscos,fcoscos0,故C正确;由于fco
8、scos1,为f(x)的最小值,故f(x)在上不单调,故D错误故选D.3、A【解析】利用二项式定理的展开式可得a,再利用微积分基本定理即可得出【详解】二项式(ax+)6的展开式中通项公式:Tr+2=(ax)r,令r=2,则T6=a2x2x2的系数为,a2=,解得a=2则x2dx=x2dx=故选:A【点睛】用微积分基本定理求定积分,关键是求出被积函数的原函数此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加4、A【解析】将不等式变形,并构造函数,利用导函数可判断在时的取值情况;根据奇函数性质,即可判断当时的符号,进
9、而得解.【详解】当时,即;令,则,由题意可知,即在时单调递减,且,所以当时,由于此时,则不合题意;当时,由于此时,则不合题意;由以上可知时,而是上的奇函数,则当时,恒成立,所以使成立的的取值范围为,故选:A.【点睛】本题考查了导数与函数单调性的关系,利用构造函数法分析函数单调性,奇函数性质解不等式,属于中档题.5、A【解析】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,因为先从其余3人中选出1人担任文艺委员,再从4人中选2人担任学习委员和体育委员,所以不同的选法共有种.本题选择A选项.6、B【解析】令,求出系数和,再令,可求得奇数项的系数
10、和,令,求出即可求解.【详解】令,得,令,得,所以,令,得,所以,故选:B【点睛】本题主要考查了赋值法求多项式展开式的系数和,考查了学生的灵活解题的能力,属于基础题.7、B【解析】展开式的通项为,令6-r=2得r=4,展开式中x2项为,所以其系数为60,故选B8、B【解析】分析:先求出的值,然后求出,利用公式求出详解:故选点睛:本题考查了随机变量的分布列的相关计算,解答本题的关键是熟练掌握随机变量的期望与方差的计算方法9、C【解析】分析:根据等差数列的通项公式,可求得首项和公差,然后可求出值。详解:数列为等差数列,所以由等差数列通项公式得 ,解方程组得 所以 所以选C点睛:本题考查了等差数列的
11、概念和通项公式的应用,属于简单题。10、A【解析】由题意,故选A.点睛:集合的基本运算的关注点:(1)看元素组成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图11、D【解析】根据观测值K2,对照临界值得出结论【详解】由题意,根据附表可得判断秃发与患有心脏病有关出错的可能性为.故选D【点睛】本题考查了独立性检验的应用问题,理解临界值表格是关键,是基础题12、C【解析】因为成等比数列,所以,利用正弦定理化简得:,又,所
12、以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】先由幂函数的定义,得到,求出,再由题意,根据幂函数的单调性,即可得出结果.【详解】因为为幂函数,所以或,又在上单调递减,由幂函数的性质,可得:,解得:,所以.故答案为:.【点睛】本题主要考查由幂函数单调性求参数,熟记幂函数的定义,以及幂函数的单调性即可,属于常考题型.14、1【解析】计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到,进而构造不等式,可得答案【详解
13、】由已知可得:,代入,得,令解得:,故答案为:1【点睛】本题考查的知识点是线性回归方程,难度不大,属于基础题在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.15、-1【解析】分析:利用纯虚数的定义直接求解详解:复数是纯虚数, ,解得 故答案为-1点睛:本题考实数值的求法,是基础题,解题时要认真审题,注意纯虚数的定义的合理运用16、【解析】根据题意,由函数的奇偶性与周期性分析可得,结合解
14、析式求出的值,又因为,即可求得答案.【详解】根据题意,函数是定义在上的周期为的奇函数,则, 函数是定义在上的奇函数 又由,时,则,则 故答案为:【点睛】本题考查通过奇函数性质和周期函数性质求值,解题关键是通过赋值法求特定的函数值和利用周期性求函数的值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)分布列见解析.(2)分布列见解析;元【解析】分析:(1)根据表格得到该超市水果日需求量(单位:千克)的分布列;(2)若A水果日需求量为140千克,则X=140(1510)(150140)(108)=680元,则P(X=680)=0.1若A水果日需求量不小于150千克,则X
15、=150(1510)=750元,且P(X=750)=10.1=0.2由此能求出X的分布列和数学期望E(X)详解:(1)的分布列为 (2)若水果日需求量为千克,则 元,且.若水果日需求量不小于千克,则元,且.故的分布列为元.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分
16、布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布XB(n,p),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)np)求得.18、 () 见解析() .【解析】试题分析:(1)根据已知函数求出定义域,则为已知函数所求出的x的范围的子集,再利用所提供的值域得出m1,n1的要求,从而说明m3;(2)根据复合函数的单调性法则,由于对数的底数0a1,以及的单调性判断出原函数f(x)在上为增函数,根据已知定义域和值域及函数的单调性,写出x值与y值
17、的对应关系式,得出列方程组,把问题转化为一元二次方程存在两个大于3的实根问题,最后利用根的分布条件列出不等式组,解出a的范围.试题解析:() ,又因为函数的定义域,可得或,而函数的值域为,由对数函数的性质知,() 在区间上递增,又因为即单调递减的函数.即有两个大于3的实数根, .【点睛】(1)处理有关集合的包含关系问题,无限数集一般使用数轴作为工具,可以直观画出集合的包含关系,常借助端点数值的大小关系满足集合的要求;(2)根据函数的单调性及函数的定义域和值域,可以得出自变量与函数值的对应关系,化归与转化思想是高考要求学生学会的一种数学思想,把一个陌生的问题通过转化,变为一个熟悉的问题去解决,本
18、题把满足方程组要求的问题转化为一元二次方程的根的分布问题,很容易得到解决.19、(1)见解析;(2)证明见解析【解析】(1)计算导数,采用分类讨论的方法,与,根据导数的符号判定原函数的单调性,可得结果.(2)根据(1)的结论,可得,然后构造新函数,通过导数研究新函数的单调性,并计算最值,然后与比较大小,可得结果.【详解】(1)函数的定义域为,若,即时,则,此时的单调减区间为;若,时,令的两根为,所以的单调减区间为,单调减区间为.当时,此时的单调增区间为,单调减区间为.(2)当时,函数有两个极值点,且,.则则要证,只需证.构造函数,则,在上单调递增,又,且在定义域上不间断,由零点存在定理可知:在上唯一实根,且.则在上递减,上递增,所以的最小值为.因为,当,则,所以恒成立.所以,所以,得证.【点睛】本题考查导数的综合应用,难点在于分类讨论思想的应用,同时掌握构造函数,化繁为简,考验分析能力以及极强的逻辑推理能力,综合性较强,属难题.20、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度劳动合同中员工权益与义务的具体规定
- 2024版给排水管材生产与销售框架协议2篇
- 项目经理合同
- 销售提成对赌协议书范本 3篇
- 新闻联播素材课件
- 生猪采购合同范本
- 合伙经营项目合作协议书
- 2024年度工厂产品代理与分销合同2篇
- 沥青施工合同完整版
- 基于云计算的智能教育服务平台合同(2024版)
- 排水管道检测项目总体实施方案样本
- 金属材料购销合同
- 地铁车站保洁培训课件
- 中药热奄包在骨质疏松症中的应用研究
- 职务侵占知识产权案例
- 《铁路三横五纵》课件
- 中医文化夜市活动策划
- 老年人综合能力评估操作
- 会议费用预算使用明细表
- 解决中小学生心理健康问题的工作策略
- 《静脉血液标本采集指南》考核试题及答案
评论
0/150
提交评论