版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1从甲、乙、丙、丁四人中选取两人参加某项活动,则甲、乙两人有且仅有一人入选的概率为( )ABCD2设为虚数单位,复数满足,则A1BC2D3将曲线按变换后的曲线的参数方程为( )ABCD4曲线在点处的切线与直线垂直,则点的坐标为( )AB或CD或5已知变量,满足回归方程,其散点图如图所示,则( )A,B,C,D,6变量满足约束条件,若的最大值为2,则实数等于( )A2B1C1D27某产品的销售收入(万元)关于产量(千台)的函数为;生产成本(万元)关于产量(千台)的函数为,为使利润最大
3、,应生产产品( )A9千台B8千台C7千台D6千台8已知函数的定义域是,则的展开式中的系数是( )AB192CD2309直线与相切,实数的值为( )ABCD10变量与的回归模型中,它们对应的相关系数的值如下,其中拟合效果最好的模型是( )模型12340.480.150.960.30A模型1B模型2C模型3D模型411小明跟父母、爷爷奶奶一同参加中国诗词大会的现场录制,5人坐成一排.若小明的父母都不与他相邻,则不同坐法的总数为( )A12B36C84D9612若向量,满足,与的夹角为,则等于( )ABC4D12二、填空题:本题共4小题,每小题5分,共20分。13的平方根为_14若的展开式中的系数
4、是,则 15一袋中有大小相同的4个红球和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为其中所有正确结论的序号是_ 16已知直线(,是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有_条(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的展开式的二项式系数之和为(1)求展开式中的常数项;(2)求展开式中的系数最大的项18(12分)我国2019年新年贺岁大片流浪地球自上映以来引发了社会的广
5、泛关注,受到了观众的普遍好评.假设男性观众认为流浪地球好看的概率为,女性观众认为流浪地球好看的概率为,某机构就流浪地球是否好看的问题随机采访了4名观众(其中2男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为流浪地球好看的人数,求的分布列与数学期望.19(12分)为了解甲、乙两奶粉厂的产品质量,采用分层抽样的方法从甲、乙两奶粉厂生产的产品中分别抽取16件和5件,测量产品中微量元素的含量(单位:毫克)下表是乙厂的5件产品的测量数据:编号123451701781661761807480777681(1)已知甲厂生产的产品共有96件,求乙厂生产
6、的产品数量;(2)当产品中的微量元素满足且时,该产品为优等品用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望)20(12分)如图,在四棱锥中,底面为菱形,且.(1)求证:平面平面;(2)若,求二面角的余弦值.21(12分)已知函数(其中),()若命题“”是真命题,求的取值范围;()设命题:;命题:若是真命题,求的取值范围22(10分)在上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理六门学科中选择三门参加等级考试,受各因素影响,小李同学决定选择物理,并在生物和地理中至少选择一
7、门.(1)小李同学共有多少种不同的选科方案?(2)若小吴同学已确定选择生物和地理,求小吴同学与小李同学选科方案相同的概率.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】算出总的个数和满足所求事件的个数即可【详解】从甲、乙、丙、丁四人中选取两人参加某项活动,总共有种情况其中满足甲乙两人仅有一人入选的有种情况所以甲、乙两人有且仅有一人入选的概率为故选:B【点睛】本题考查了古典概型的求法,组合问题的简单应用,属于基础题2、B【解析】利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可【详解】由,得,故选【点睛】本题主
8、要考查复数代数形式的乘除运算以及复数的模的计算3、D【解析】由变换:可得:,代入曲线可得:,即为:令 (为参数)即可得出参数方程故选D.4、B【解析】试题分析:设,或,点的坐标为或考点:导数的几何意义5、D【解析】由散点图知变量负相关,回归直线方程的斜率小于1;回归直线在y轴上的截距大于1可得答案.【详解】由散点图可知,变量之间具有负相关关系回归直线的方程的斜率回归直线在轴上的截距是正数故选:D【点睛】本题考查了散点图与线性回归方程的应用问题,是基础题6、C【解析】将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示, 其中显然不是最优解,故只能是最优
9、解,代入目标函数得,解得,故选C考点:线性规划7、B【解析】根据题意得到利润关于产量的函数式,再由导数求得使利润最大时的产量,即可求解出答案。【详解】设利润为万元,则,令,得,令,得,当时,取最大值,故为使利润最大,应生产8千台选B.【点睛】本题主要考查了利用导数的性质求函数的最值来解决实际问题。8、A【解析】函数的定义域是可知,-1和2是方程的两根,代入可求得值,再根据二项式定理的通项公式进行求解即可【详解】因为的定义域,所以-1和2是方程的两根,将-1代入方程可得,则二项式定理为根据二项式定理的通项公式,的系数答案选A【点睛】本题考察了一元二次方程根与系数的关系,二项式定理通项公式的求法及
10、二项式系数的求法,难度不大,但综合性强9、B【解析】利用切线斜率等于导数值可求得切点横坐标,代入可求得切点坐标,将切点坐标代入可求得结果.【详解】由得:与相切 切点横坐标为:切点纵坐标为:,即切点坐标为:,解得:本题正确选项:【点睛】本题考查导数的几何意义的应用,关键是能够利用切线斜率求得切点坐标.10、C【解析】分析:根据相关系数的性质,最大,则其拟合效果最好,进行判断即可详解:线性回归分析中,相关系数为r,越接近于1,相关程度越大;越小,相关程度越小,模型3的相关系数最大,模拟效果最好,故选:A点睛:本题主要考查线性回归系数的性质,在线性回归分析中,相关系数为r,越接近于1,相关程度越大;
11、越小,相关程度越小11、B【解析】记事件A:小明的父亲与小明相邻,事件B:小明的母亲与小明相邻,利用捆绑法计算出事件A、事件B、事件AB的排法种数nA、nB、nAB【详解】记事件A:小明的父亲与小明相邻,事件B:小明的母亲与小明相邻,对于事件A,将小明与其父亲捆绑,形成一个元素,与其他四个元素进行排序,则nA=A对于事件AB,将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序,则nAB=A2【点睛】本题考查排列组合综合问题,考查捆绑法以及容斥原理的应用,解题时要合理利用分类讨论思想与总体淘汰法,考查逻辑推理能力,属于中等题。12、B【解析】将平方后再开方去计算
12、模长,注意使用数量积公式.【详解】因为,所以,故选:B.【点睛】本题考查向量的模长计算,难度一般.对于计算这种形式的模长,可通过先平方再开方的方法去计算模长.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据可得出的平方根.【详解】,因此,的平方根为.故答案为.【点睛】本题考查负数的平方根的求解,要熟悉的应用,考查计算能力,属于基础题.14、1【解析】先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式中的项的系数,再根据的系数是列方程求解即可.【详解】展开式的的通项为,令,的展开式中的系数为,故答案为1.【点睛】本题主要考查二项展开式定理的通项与系数,属于简
13、单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15、【解析】分析:所求概率为 ,计算即得结论;利用取到红球次数 可知其方差为 ;通过每次取到红球的概率 可知所求概率为 详解:从中任取3球,恰有一个白球的概率是,故正确;从中有放回的取球6次,每次任取一球,取到红球次数,其方差为,故正确;从中有放回的取球3次,每次任取一球,每次取到红球的概率,至少有一次取到红球的概率为,故正确故答案为:点睛:本题
14、主要考查命题的真假判断,涉及概率的计算,考查学生的计算能力16、60【解析】直线是截距式方程,因而不平行坐标轴,不过原点,考查圆上横坐标和纵坐标均为整数的点的个数,结合排列组合知识分类解答即可得到答案.【详解】可知直线的截距存在且不为0,即与坐标轴不垂直,不经过坐标原点,而圆上的公共点共有12个点,分别为:,,前8个点中,过任意一点的圆的切线满足,有8条;12个点中过任意两点,构成条直线,其中有4条直线垂直x轴,有4条垂直于y轴,还有6条过原点(圆上点的对称性),满足题设的直线有52条,综上可知满足题设的直线共有52+8=60条,故答案为60.【点睛】本题主要考查排列组合知识,解决此类问题一定
15、要做到不重不漏,意在考查学生的分析能力及分类讨论的数学思想,难度较大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据二项式系数和为,求出的值,然后写出二项展开式的通项,令的指数为零,求出参数的值,再代入通项可得出展开式中的常数项;(2)设,利用作商法求出的最大值,以及对应的值,再将的值代入展开式通项可得出所求的项.【详解】(1)的展开式的二项式系数之和为,得.的展开式的通项为.令,解得,因此,的展开式中的常数项为;(2)设,则.当时,则有;当时,则有.所以,当时,最大,因此,展开式中的系数最大的项为.【点睛】本题考查二项展开式常数项的求解
16、,同时也考查了二项式系数和以及系数最大项的求解,一般要利用项的系数的单调性来求解,考查计算能力,属于中等题.18、(1)(2)见解析,【解析】设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,可得,.(1)设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,利用互斥事件与相互独立事件的概率计算公式即可得出(2)的可能取值为0,1,2,3,4,利用互斥事件与相互独立事件的概率计算公式即可得出概率、分布列及其数学期望【详解】解:设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,则,.(1)设事件A表示“这4名观众中女性认为好看的人数比男性认为
17、好看的人数多”,则.(2)的可能取值为0,1,2,3,4,的分布列为: 01234所以【点睛】本题考查了用频率估计概率、随机变量的数学期望、二项分布列的性质、互斥事件与相互独立事件的概率计算公式,考查了推理能力与计算能力,属于中档题19、(1)30;(2)18;(3)分布列见解析,期望为【解析】分析:(1)设乙厂生产的产品数量为件,由,即可求得乙厂生产的产品数量;(2)由题意,从乙厂抽取的件产品中,编号为的产品是优等品,即件产品中有 件是优等品,由此可估算出乙厂生产的优等品的数量;(3)可能的取值为,求得取每个随机变量时的概率,得到分布列,利用公式求解数学期望详解:(1)设乙厂生产的产品数量为
18、件,则,解得所以乙厂生产的产品数量为30件(2)从乙厂抽取的5件产品中,编号为2、5的产品是优等品,即5件产品中有3件是优等品由此可以估算出乙厂生产的优等品的数量为(件)(3)可能的取值为0,1,2 的分布列为:012点睛:本题主要考查了统计的应用,以及随机变量的分布列和数学期望的求解,其中正确理解题意,合理作出运算是阶段的关键,着重考查了分析问题和解答问题的能力,能很好的考查考生数学应用意识、基本运算求解能力等.【详解】请在此输入详解!20、(1)见解析; (2).【解析】(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【详解】(1)证明:取中点,连结,因为底面为菱形,所以 因为为的中点,所以 在中, 为的中点,所以设,则,因为,所以 在中,为的中点,所以在 和 中,因为,所以 所以所以 因为,平面,平面,所以平面因为平面,所以平面平面 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械厂的实习报告锦集6篇
- 灰雀课件美术
- 超市促销员工工作总结
- 教导主任个人述职报告集合八篇
- 感恩父亲节的学生作文大全十篇
- 蓝色的树叶课件
- 质量承诺书范文集锦八篇
- 管理安全教育课件
- 教研工作计划
- 高中语文教学工作计划范文锦集5篇
- 盐浴液体氮化(QPQ)工艺
- 水泥混凝土路面施工技术交底
- “青年安全生产示范岗”创建活动方案
- 开关电源规格书
- 工程项目管理流程图
- 表箱技术规范
- 【全册】最新部编人教版三年级道德与法治上册知识点总结
- 植草沟施工方案
- 苯-甲苯浮阀塔精馏课程设计.doc
- 环保-TVOC监测标准方案
- 专题04 《鱼我所欲也》三年中考真题(解析版)-备战2022年中考语文课内文言文知识点梳理+三年真题训练(部编版)
评论
0/150
提交评论