拉普拉斯方程_第1页
拉普拉斯方程_第2页
拉普拉斯方程_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业两个自变量的具有以下形式:解析函数的实部和虚部均满足。换言之,若z=x+iy,并且那么f(z)是解析函数的是它满足下列柯西-黎曼方程:上述方程继续求导就得到所以u满足。类似的计算可推得v同样满足拉普拉斯方程。反之,给定一个由解析函数(或至少在某点及其邻域内解析的函数)f(z)的实部确定的,若写成下列形式:则等式成立就可使得柯西-黎曼方程得到满足。 上述关系无法确定,只能得到它的微增量表达式:满足拉普拉斯方程意味着满足可积条件:所以可以通过一个线积分来定义。可积条件和斯托

2、克斯定理的满足说明线积分的结果与积分经过的具体路径无关,仅由起点和终点决定。于是,我们便通过复变函数方法得到了和这一对拉普拉斯方程的解。这样的解称为一对共轭。这种构造解的方法只在局部(复变函数f(z))的解析域内)有效,或者说,的积分路径不能围绕有f(z)的奇点。譬如,在极坐标平面(r,)上定义函数那么相应的解析函数为在这里需要注意的是,极角仅在不包含原点的区域内才是单值的。拉普拉斯方程与解析函数之间的紧密联系说明拉普拉斯方程的任何解都无穷阶可导(这是解析函数的一个性质),因此可以展开成幂级数形式,至少在不包含奇点的圆域内是如此。这与的解形成鲜明对照,后者包含任意函数,其中一些的可微分阶数是很小的。幂级数和傅里叶级数之间存在着密切的关系。如果我们将函数f在复平面上以原点为中心,R为半径的圆域内展开成幂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论