版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知随机变量服从正态分布, 且, 则 ( )ABCD2复数的模是( )A3B4C5D73复数的虚部为( )ABCD4设,则的定义域为( )A(4,0)(0,4)B(4,1)(1,4)C(2,1)(1,2)D(4,2)(2,4)5函数(,e是自然对数的底数,)存在唯一的零点,则实数a的取值范围为( )ABCD6设x,y满足约束条件,则目标函数的取值范围为( )ABCD7某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:做不到能做到高年级4510低年级3
3、015则下列结论正确的是( )附参照表:0.100.0250.012.7065.0246.635参考公式:,其中A在犯错误的概率不超过的前提下,认为“学生能否做到扶跌倒老人与年级高低有关”B在犯错误的概率不超过的前提下,“学生能否做到扶跌倒老人与年级高低无关”C有以上的把握认为“学生能否做到扶跌倒老人与年级高低有关”D有以上的把握认为“学生能否做到扶跌倒老人与年级高低无关”8若曲线:与曲线:(其中无理数)存在公切线,则整数的最值情况为( )A最大值为2,没有最小值B最小值为2,没有最大值C既没有最大值也没有最小值D最小值为1,最大值为29设,则ABCD10已知点为抛物线: 的焦点. 若过点的直
4、线交抛物线于,两点, 交该抛物线的准线于点,且,则( )AB0C1D211已知函数在区间内没有极值点,则的取值范围为ABCD12已知随机变量的取值为,若,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在复平面内,复数1-i(i为虚数单位)的共轭复数对应的点位于第_象限.14用5,6,7,8,9组成没有重复数字的五位数,其中两个偶数数字之间恰有一个奇数数字的五位数的个数是_.(用数字作答)15已知函数与函数的图象所围成的面积为,则实数的值为_16已知复数(,为常数,)是复数的一个平方根,那么复数的两个平方根为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
5、17(12分)如图,在四边形中,.(1)求的余弦值;(2)若,求的长.18(12分)已知椭圆的离心率为,分别为椭圆的左、右焦点,点在椭圆上.(1)求的方程;(2)若直线与椭圆相交于,两点,试问:在轴上是否在点,当变化时,总有?若存在求出点的坐标,若不存在,请说明理由.19(12分)某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:甲类乙类男性居民315女性居民66()根据上表中的统计数据,完成下面的列联表;男性居民女性居民总计不
6、参加体育锻炼参加体育锻炼总计()通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?附:,其中.0.100.050.012.7063.8416.63520(12分)已知向量,设函数(1)求f(x)的最小正周期与单调递减区间;(2)在ABC中,a、b、c分别是角A、B、C的对边,若,ABC的面积为,求a的值21(12分)已知函数.(1)讨论的单调性;(2)若存在实数,使得,求正实数的取值范围.22(10分)如图,二面角的大小为,四边形是边长为的正方形,为上的点,且平面.(1)求证:;(2)求二面角的大小;(3)求点到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。
7、在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先计算出,由正态密度曲线的对称性得出,于是得出可得出答案【详解】由题可知,由于,所以,因此,故选B.【点睛】本题考查正态分布在指定区间上的概率,考查正态密度曲线的对称性,解题时要注意正态密度曲线的对称轴,利用对称性来计算,考查运算求解能力,属于基础题2、C【解析】直接利用复数的模的定义求得的值【详解】|, 故选:C【点睛】本题主要考查复数的模的定义和求法,属于基础题3、C【解析】利用复数除法运算求得,根据虚部定义得到结果.【详解】 的虚部为:本题正确选项:【点睛】本题考查复数虚部的求解,涉及到复数的除法运算,属于基础题.4、B【
8、解析】试题分析:要使函数有意义,则解得,有意义,须确保两个式子都要有意义,则,故选.考点:1.函数的定义域;2.简单不等式的解法.5、A【解析】函数,是自然对数的底数,存在唯一的零点等价于函数 与函数只有唯一一个交点,由,可得函数 与函数唯一交点为,的单调,根据单调性得到与的大致图象,从图形上可得要使函数 与函数只有唯一一个交点,则,即可解得实数的取值范围【详解】解:函数,是自然对数的底数,存在唯一的零点等价于:函数 与函数只有唯一一个交点,函数 与函数唯一交点为,又,且,在上恒小于零,即在上为单调递减函数,又 是最小正周期为2,最大值为的正弦函数,可得函数 与函数的大致图象如图:要使函数 与
9、函数只有唯一一个交点,则, ,解得,又,实数的范围为故选:【点睛】本题主要考查了零点问题,以及函数单调性,解题的关键是把唯一零点转化为两个函数的交点问题,通过图象进行分析研究,属于难题6、A【解析】作出可行域,将问题转化为可行域中的点与点的斜率问题,结合图形可得答案.【详解】画出满足条件得平面区域,如图所示: 目标函数的几何意义为区域内的点与的斜率,过与时斜率最小,过与时斜率最大,故选:A.【点睛】本题考查了利用线性规划求分式型目标函数取值范围问题,解题关键是转化为斜率,难度较易.7、C【解析】分析:根据列联表中数据,利用公式求得,参照临界值表即可得到正确结论.详解:由公式可得,参照临界值表,
10、以上的把握认为,“学生能否做到扶跌倒老人与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.8、C【解析】分析:先根据公切线求出,再研究函数的最值得解.详解:当a0时,显然不满足题意.由得,由得.因为曲线:与曲线:(其中无理数)存在公切线,设公切线与曲线切于点,与曲线切于点,则将代入得,由得,设当x2时,f(x)单调递减,当x2时,f(x)单调递增.或a0.故答案为:C点睛:(1)本题主要考查导数的几何意义,考查利用导数求函数的最值,意在考查学生对这
11、些基础知识的掌握能力和分析推理能力. (2)解答本题的关键是求出,再研究函数的最值得解.9、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10、B【解析】将长度利用相似转换为坐标关系,联立直线和抛物线方程,利用韦达定理求得答案.【详解】易知:焦点坐标为,设直线方程为: 如图
12、利用和 相似得到:,【点睛】本题考查了抛物线与直线的关系,相似,意在考查学生的计算能力.11、D【解析】利用三角恒等变换化简函数的解析式,再根据正弦函数的极值点,可得2k242k,或2k242k,kZ,由此求得的取值范围【详解】函数sin2x21sin2xcos2x+12sin(2x)+1 在区间(,2)内没有极值点,2k242k,或2k242k,kZ解得 k,或k,令k0,可得故选D【点睛】本题主要考查三角恒等变换,正弦函数的极值点,属于中档题12、C【解析】设,则由,列出方程组,求出,即可求得【详解】设,又由得,故选:C.【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布
13、列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、一【解析】根据共轭复数的概念,即可得到答案.【详解】的共轭复数是,在复平面对应的点为,故位于第一象限.【点睛】本题主要考查共轭复数的概念,难度很小.14、36【解析】将两个偶数以及两个偶数之间的奇数当作一个小团体,先进行排列,再将其视为一个元素和剩余两个奇数作全排列即可.【详解】根据题意,先选择一个奇数和两个偶数作为一个小团体,再将剩余两个奇数和该小团体作全排列,则满足题意的五位数的个数是种.故答案为:36.【点睛】本题考查捆绑法,属排列组合基础题.1
14、5、【解析】求出两函数的交点坐标,可得知当时,由此得出两函数图象所围成区域的面积为,可解出实数的值.【详解】联立,得或,当时,由不等式的性质得.所以,函数与函数的图象所围成的面积为,即,解得,故答案为:.【点睛】本题考查利用定积分计算曲边三角形的面积,解题时要结合题意确定被积区间与被积函数,并利用定积分公式进行计算,考查运算求解能力,属于中等题.16、,【解析】由题可知,再对开根号求的两个平方根即可.【详解】由题,故,即,故复数的两个平方根为与故答案为:,【点睛】本题主要考查了复数的基本运算,运用即可联系与的关系,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17
15、、(1)(2)【解析】(1)先利用余弦定理求出BC=2,再利用正弦定理求出,再求的余弦值;(2)先求出,再利用正弦定理求AD得解.【详解】解:(1)因为,所以,即,所以.由正弦定理得,所以,又因为,所以.(2)由(1)得,所以,所以,所以.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于基础题.18、 (1) (2)见解析【解析】(1)根据离心率为,点在椭圆上联立方程组解得答案.(2)设存在定点,联立方程,利用韦达定理得到关系式,推出,代入数据计算得到答案.【详解】解:(1)由题可知又,解得,所以,即所求为(2)设存在定点,并设,由联立消可得所以,因为,
16、所以,即所以,整理为所以可得即,所以所以存在定点满足题意【点睛】本题考查了椭圆离心率,定点问题,将转化为是解题的关键.19、()列联表见解析;()有90%的把握认为参加体育锻炼与否与性别有关.【解析】()直接根据给出的数据填入表格即可;()根据列联表,代入公式,计算出的观测值与临界值进行比较,进而得出结论.【详解】解:()填写的列联表如下:男性居民女性居民总计不参加体育锻炼369参加体育锻炼15621总计181230()计算,有90%的把握认为参加体育锻炼与否与性别有关.【点睛】本题主要考查列联表及独立性检验,较基础.20、(1),;(2).【解析】试题分析:(1)由两向量的坐标,利用平面向量
17、的数量积运算列出解析式,化简后利用周期公式求出最小正周期;利用正弦函数的单调性确定出递增区间即可;(2)由,根据解析式求出的度数,利用三角形面积公式列出关系式,将b,及已知面积代入求出的值,再利用余弦定理即可求出的值试题解析:(1),令(),()的单调区间为,(2)由得,又为的内角, ,.【点睛】此题考查了余弦定理,平面向量的数量积运算,正弦函数的单调性,以及三角形的面积公式,其中熟练掌握余弦定理是解本题的关键21、(1)见解析;(2).【解析】(1)求出定义域以及,分类讨论,求出大于0和小于0的区间,从而得到的单调区间;(2)结合(1)的单调性,分类讨论,分别求出和以及函数在上的单调区间以及
18、最小值,从而求出的范围。【详解】(1)的定义域为,.当时,则在上单调递增;当时,由得:由得:.所以在上单调递减,在上单调递增.综上所述:当时,的单调递增区间为;当时,的单调递减区间为,单调递增区间为. (2)由(1)知,当时,在上单调递减,在上单调递增。当即时,在上单调递增,不符合题意; 当即时,在上单调递减,在上单调递增,由,解得:;当即时,在上单调递减,由,解得:综上所述:a的取值范围是.【点睛】本题考查函数的单调性,函数的最值问题,考查导数的应用,分类讨论的思想,有一定的综合性。22、 (1)见解析;(2);(3).【解析】试题分析:(1)由平面可证,由二面角为直二面角及是正方形可证,再由线面垂直判定定理得平面,即可得证;(2)取的中点,连接,由四边形为正方形可证,即可得为二面角的平面角,根据题设条件求出及,即可得二面角的余弦值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股东对赌协议
- 婚内财产只归女方协议书范本
- 财务会计实习报告范文
- 部门kpi报告范文
- 2024年度高速公路交通事故应急预案合同2篇
- 《防静电知识讲座》课件
- 基于二零二四年度的版权运营合同
- 土地承包经营权转让合同
- 2024版租赁合同(办公场所)2篇
- 《工程构造》课件
- 中枢神经系统胶质瘤诊断和治疗指南
- 高等数学(下)知到章节答案智慧树2023年西北农林科技大学
- 二人合伙人合同协议书电子版
- 通信的知识-家长进课堂
- 人音版小学音乐四年级上册期末测试题(音乐理论)及答案
- 服装怎么验货服装验货的标准及步骤详解
- 生命科学导论(上海交通大学)智慧树知到答案章节测试2023年
- 护理不良事件分析修改
- 社会学第十三章社会问题
- 送达地址及收款账户确认书
- JJG 556-2011轴向加力疲劳试验机
评论
0/150
提交评论