教育测量 第五讲 几种常用的检验方法_第1页
教育测量 第五讲 几种常用的检验方法_第2页
教育测量 第五讲 几种常用的检验方法_第3页
教育测量 第五讲 几种常用的检验方法_第4页
教育测量 第五讲 几种常用的检验方法_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教育测量 第五讲 几种常用的检验方法第1页,共39页,2022年,5月20日,16点58分,星期三第四节 几种常用统计检验方法一、关于统计值之间差异的研究这些差异一般分为两种情况讨论:样本统计量与相应的总体参数的差异两个样本统计量之间的差异。我们所关心的是从样本统计值得到的差异能否作出一般性的结论也就是总体参数之间是否确实存在差异。第2页,共39页,2022年,5月20日,16点58分,星期三假设检验的基本问题二、关于假设检验统计学中进行由样本差异推断总体差异的推论过程,称为是假设检验。经过检验,如果所得到的差异超过了统计学规定的某一误差限度,则表明这个误差已经不属于抽样误差,而是总体确实有差

2、异,这种情况就叫差异显著;反之,差异达不到规定限度,说明该差异主要来源于抽样误差,称差异不显著。第3页,共39页,2022年,5月20日,16点58分,星期三假设检验的基本问题具体来说,如果样本统计量与相应的总体已知参数差异显著,则意味着该样本已基本不属于已知总体;若两个样本统计量的差异显著,则意味着各自代表的两个总体参数之间确实存在差异。第4页,共39页,2022年,5月20日,16点58分,星期三假设检验的基本问题三、统计检验的意义统计检验的一个重要内容就是进行差异的显著性检验(检验差异到底是来自总体还是来自样本)如果在某种标准下,检验结果差异显著,则差异来自总体;如果差异不显著,差异来自

3、于样本,或者说,差异是由于抽样的原因而引起的。第5页,共39页,2022年,5月20日,16点58分,星期三假设检验的基本问题四、统计检验的思想和方法检验的思想是用反证法。检验时,我们先假设两个总体平均数没有显著性差异,即1 =2,这种假设称为原假设或零假设H0,然后通过检验,检验其是否成立.如果差异大,就否定假设H0,如果差异小,就接受假设H0.统计检验有无差异必须以一定的标准去衡量.第6页,共39页,2022年,5月20日,16点58分,星期三假设检验的基本问题五、假设检验的步骤1、提出原假设H0,即零假设;2、选择和计算教育统计量;3、对给定的显著性水平确定临界值;4、将统计量计算的结果

4、与临界值进行比较,从而决定是拒绝还是接受原假设。第7页,共39页,2022年,5月20日,16点58分,星期三Z检验(平均数的差异性检验)2、分类 根据样本的多少可以分为单总体的Z检验和双总体的Z检验。 适用条件:1、已知总体标准差,或者总体标准差未知,但样本 为大样本的平均数的差异性检验。因为大样本的平均 数的 抽样分布服从于正态分布。故可采用统计量Z 检验。1、已知总体标准差,或者总体标准差未知,但样本 为大样本的平均数的差异性检验。因为大样本的平均 数的 抽样分布服从于正态分布。故可采用统计量Z 检验。第8页,共39页,2022年,5月20日,16点58分,星期三单总体的Z检验 (平均数

5、的差异性检验)1、适用条件:检验一个样本平均数与一个已知的总体平均数的差异是否显著。2、检验的统计量:这里,Z作为检验的统计量,为样本平均数, 为总体平均数,为总体标准差,n为样本容量。第9页,共39页,2022年,5月20日,16点58分,星期三单总体的Z检验 (平均数的差异性检验)3、检验过程:建立虚无假设:计算统计量:确定显著性水平的值。若为0.01, 则临界值为2.58;若为0.05,则为1.96.比较,作出判断。若ZZ0.05(或Z0.01),即Z1.96,或Z2.58,则说明在显著性水平=0.05(0.01)的水平上,差异是显著的,否则,就说明差异不显著.第10页,共39页,202

6、2年,5月20日,16点58分,星期三双总体的Z检验 (平均数的差异性检验)1、适用条件:检验两个样本平均数各自代表的总体平均数的差异是否显著。2、检验的统计量:这里,Z作为检验的统计量,为样本平均数,是两样本的标准差,n1,n2分别为两样本的容量。第11页,共39页,2022年,5月20日,16点58分,星期三双总体的Z检验 (平均数的差异性检验)3、检验过程:建立虚无假设:计算统计量:确定显著性水平的值。若为0.01, 则临界值为2.58;若为0.05,则为1.96.比较,作出判断。若ZZ0.05(或Z0.01),即Z1.96,或Z2.58,则说明在显著性水平=0.05(0.01)的水平上

7、,差异是显著的,否则,就说明差异不显著.第12页,共39页,2022年,5月20日,16点58分,星期三适用条件:1、总体呈正态分布。如果总体标准未知而且样本为小样本(t30)的平均数的差异性检验。2、分类 根据样本的多少可以分为单总体的t检验和双总体的t检验。t检验 (平均数的差异性检验)第13页,共39页,2022年,5月20日,16点58分,星期三单总体的t检验 (平均数的差异性检验)1、适用条件:检验一个样本平均数与一个已知的总体平均数的差异是否显著。2、检验的统计量:这里,t作为检验的统计量,为样本平均数,为总体平均数为样本标准差,n为样本容量。第14页,共39页,2022年,5月2

8、0日,16点58分,星期三单总体的t检验 (平均数的差异性检验)3、检验过程:建立虚无假设:计算统计量:确定显著性水平的值。并根据自由度和显著性水平查表,得到临界值。比较,作出判断。若tt(n-1)0.05(或t(n-1)0.01), 则说明在显著性水平 =0.05(0.01)的水平上,差异是显著的;否则,就说明差异不显著.第15页,共39页,2022年,5月20日,16点58分,星期三1、适用条件 是检验两个样本平均数与其各自代表的总体的差异是否显著。2、分类 相关样本的平均数的差异性检验 独立样本的平均数的差异性检验 双总体的t检验 (平均数的差异性检验)第16页,共39页,2022年,5

9、月20日,16点58分,星期三双总体的t检验相关样本 (平均数的差异性检验)相关样本 所谓相关样本,是指两个样本之间存在一一对应的关系。 譬如,同一组被试在实验前与实验后结果的比较;同一组被试在两种不同条件下结果的比较;被试的两组是经过有意匹配的对偶组;实验时经过匹配的实验组与对照组的结果的比较,等等。都是相关样本的比较。第17页,共39页,2022年,5月20日,16点58分,星期三双总体的t检验相关样本 (平均数的差异性检验)独立样本 所谓独立样本,是指从两个无关的总体中随即抽取的两个样本称为是独立样本。 譬如,男女性别的差异比较;没有经过匹配的、仅仅是随机选择的实验组与对照组的实验结果的

10、比较;等等,都属于独立样本的比较。第18页,共39页,2022年,5月20日,16点58分,星期三独立样本的t检验 (平均数的差异性检验)1、适用条件:检验两个样本平均数各自代表的总体平均数的差异是否显著。2、检验的统计量:这里,t作为检验的统计量,为样本平均数,是两总体方差的估计值,n1,n2分别为两样本的容量。第19页,共39页,2022年,5月20日,16点58分,星期三相关样本的t检验 (平均数的差异性检验)1、适用条件:检验两个配对样本平均数各自代表的总体平均数的差异是否显著。2、检验的统计量:这里,t作为检验的统计量,为样本平均数,是两样本方差,n为相关样本的容量。 r为相关样本的

11、相关系数。第20页,共39页,2022年,5月20日,16点58分,星期三思考题1、为了研究男女生在学习数学方面的情况,从某校中随机抽取男生10名,女生8名,测验得到男生的数学平均成绩是80.4分,标准差是7.6分,女生的数学平均成绩是71.8分,标准差是7.5分,问男生的数学成绩是否比女生高?请问:进行男女生数学成绩的差异性检验时,是按照相关样本还是按照独立样本进行?为什么?第21页,共39页,2022年,5月20日,16点58分,星期三思考题2、从某个人多次的视反应时测量的结果随即抽取40个数据,再从其听反应时的多次测量结果中随机抽取40个数据,进行视、听反应的差异检验时,是按照独立样本还

12、是按照相关样本进行检验?为什么?3、对于上题进行数据收集的时候,如果每个被试只收集视、听反应时的数据各一个,如果共有40个被试,则进行视、听反应的差异检验时,是按照独立样本还是按照相关样本进行检验?为什么?第22页,共39页,2022年,5月20日,16点58分,星期三4、为了研究数学统编教材和数学实验教材的优劣。某学校对一个班先用实验教材授课,时间为一年。然后用统编教材授课一年。两种教材使用前都进行前测,结束后进行后测。从该班中抽取10名学生,检验他们在使用两种不同教材的实验结果的差异性检验,是按照独立样本还是按照相关样本进行检验?为什么?思考题第23页,共39页,2022年,5月20日,1

13、6点58分,星期三5、为了研究数学统编教材和数学实验教材的优劣。某学校对一个班先用实验教材授课,时间为一年。然后用统编教材授课一年。两种教材使用前都进行前测,结束后进行后测。如果已知该班的人数为35人,实验后统计两种教学结果,要检验他们在使用两种不同教材的实验结果的差异性检验,应该按照什么样的检验方法进行检验?思考题答案:双总体的Z检验第24页,共39页,2022年,5月20日,16点58分,星期三平均数的检验方法小结11、前提是两个总体方差相同,或至少没有显著性差异。2、检验的方法有两种: 总体服从正态分布,总体标准差已知,不管是大样本还是小样本,均用Z检验。 不知道总体的分布情形,总体标准

14、差未知,当样本为大样本时,用Z检验,这时用样本的标准差代替总体标准差就可以了;当样本为小样本时,必须用t检验,这时的标准差可以用总体标准差的估计量S来表示,它与样本标准差的关系是:第25页,共39页,2022年,5月20日,16点58分,星期三2、关于显著性水平 差异性显著检验是和显著性水平联系在一起的。我们说差异显著不显著,是针对特定的 而言的。同一个问题,由于显著性水平的不同,可能会得到完全相反的结论。3、检验时究竟采用单尾还是双尾检验,这是假设检验中的重要的技术性的问题。一般情况下,当研究者如果想要知道两个参数是否有差异,而不强调 差异的方向时,用双尾检验;反之用单尾检验。 单尾检验适用

15、于检验某一参数是否“大于”或“优于”、“快于”、“小于”、“劣于”、“慢于”另一参数的一类问题。 平均数的检验方法小结1第26页,共39页,2022年,5月20日,16点58分,星期三关于双尾与单尾检验举例例1:全区统一考试数学平均分标准差某学校的一个班(n=41)的数学平均成绩问该班成绩与全区平均成绩差异是否显著?例2:有人调查小学五年级中经过奥数训练的学生对其数学思维的影响,从受过奥数训练的学生中随机抽取70人,进行数学思维能力的测试,结果平均成绩是80分(已知小学五年级学生数学思维能力的测试的平均成绩是75分,标准差是15分),能否认为受过奥数训练的学生在数学思维能力方面高于一般水平?第

16、27页,共39页,2022年,5月20日,16点58分,星期三F检验(方差的差异检验)1、适用条件 检验两个总体的方差是否有显著性差异(也称为是方差齐性检验)。主要用于两个独立样本的方差齐性检验。 由于标准差的抽样分布受样本容量的影响,只有样本容量较大时,抽样分布才接近正态,因此需要对标准差进行参数估计,也就是要对方差进行参数估计。2、F检验是右侧单尾检验,计算统计量时,应该用总体方差估计值中较大的一个作为分子,较小的作为分母,使得F1,进行比较。第28页,共39页,2022年,5月20日,16点58分,星期三F检验(方差的差异检验)2、关于F分布若从两个相互独立的正态总体中随机抽取两个样本,

17、以此为基础,分别求出两个相应总体方差的估计值,这两个总体方差估计值的比值称为F比值,即F比值的抽样分布称为F分布,F比值称为统计量。F统计量有两个自由度,一个是分子的自由度自由度,分母的自由度性水平时的临界F值,可表示为:第29页,共39页,2022年,5月20日,16点58分,星期三F检验一般步骤1、建立虚无假设:2、计算统计量:3、确定显著性水平的值。并根据自由度df1、df2和显著性水平查表,得到临界值:4、比较,作出判断。若F与临界值进行比较,并进行统计决断。第30页,共39页,2022年,5月20日,16点58分,星期三1、适用条件是对样本的频数分布所来自的总体分布是否服从于某种理论

18、分布所作的假设检验。 它适用于计数资料的检验。譬如,根据类别不同的样本频数来推断总体的分布。 根据性别分类,按男女性别分别计数; 根据年龄分类,可以分为老年、中年、青年等,按照不同年龄段的人数进行计数。因此,比较适合对问卷进行统计分析。第31页,共39页,2022年,5月20日,16点58分,星期三 自由度的计算:单向表的自由度一般等于组数(K)减1,即df =K-1,而RC表的自由度需注意计算公式为df=(R-1)(C-1)1、适用条件是实得次数与理论次数偏离程度的差异程度的差异性显著检验。用公式表示为:第32页,共39页,2022年,5月20日,16点58分,星期三例题分析一一、从某校高中应届毕业生中抽取54人进行体检,健康状况属于良好的有15人,中等的有23人,差的有16人。问该校高中应届毕业生健康状况好、中、差的人数比率是否是1:2:1?第33页,共39页,2022年,5月20日,16点58分,星期三例题分析二二、某大学一年级学生在数学分析期中考试中,平均成绩为73分,标准差为17分;期末考试以后,随机抽取20人的数学分析成绩,其平均成绩为79.2分,问该年级学生的数学分析成绩是否有明显进步?第34页,共39页,2022年,5月20日,16点58分,星期三例题分析三三、一次数学考试后,从两个学校随机抽取试卷n1=10份和n2=9份,算得样本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论