2022年大数据时代的机遇与挑战的学习心得_第1页
2022年大数据时代的机遇与挑战的学习心得_第2页
2022年大数据时代的机遇与挑战的学习心得_第3页
2022年大数据时代的机遇与挑战的学习心得_第4页
2022年大数据时代的机遇与挑战的学习心得_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第11页共11页2022年大数据时代的机遇与挑战的学习心得大数据时代大学教育的机遇与挑战摘要。随着大数据元年的到来,大数据已经开始冲击着各行各业,并影响着大学教育的方方面面。大数据时代将改善学习的核心要素,给大学教育带来深刻的影响。在大数据时代大学教育由单向度反馈转向多向度反馈,为实现个性化的教学方案提供必要的前提。同时大数据在大学教育中的应用还将面临技术层面、学生个人隐私及预测结果的正确运用等多方面的挑战。关键词:大数据时代;大学教育;机遇;挑战早在_年_月,麦肯锡公司发布的大数据:下一个创新、竞争和生产力的前沿报告中指出:大数据的规模以及其存储容量正在迅速增长,大数据已经渗透到各个行业中,

2、成为重要的生产因素,成为可以与物质资料和人力资本并论的生产要素。正如马克思。所说“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产。劳动资料不仅是人类劳动力发展的测量器,而且是劳动借以进行的社会关系的指示器。”大数据的演进与生产力的提高将产生直接的关系,大数据将成为重要的生产资料。同时,用于大数据分析的关键技术包括云计算、数据仓库、bigtable等日趋成熟,使大数据的整合、处理、管理、分析成为可能。_年,被称为“大数据时代元年”,标志着大数据时代的正式开始。进入_年“大数据”走入了我们的生活,对各行各业产生了深刻的影响,每个行业的经营模式、生产模式、管理模式等正产生翻天

3、覆地的变化,也为各行业带来了改革的契机。维克托。迈尔。舍恩伯格在大数据时代中指出:“大数据开启了一次重大的时代转型。大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发”大数据时代不仅仅包含着各种类型数量众多的数据,更重要的是代表了快速取得并有效利用有价值资料的能力。在大数据时代到来之前,由于定量研究是建立在假设和有限的抽样数据的基础上,使得定量研究复杂而缺乏准确性,大数据时代将彻底改变这一状况,它可以让纷繁复杂、单调枯燥的数据变成可以说话的信息,它的实质不仅在于大量的占有数据,更多的是提供了预测性和前瞻性的信息和知识。淘宝、京东等众多购物网站可以根据顾

4、客的浏览历史数据判断出顾客的喜好和最近的需求;沃尔玛等跨国连锁超市可以实现从啤酒、尿布、日用品等全系产品销售数据的分析,以此实现准确的物资仓储储备;美国洛杉矶警局利用各类案件的大数据的分析来合理安排巡逻车和布置警力。这些无疑不是大数据预测性的体现。大数据的预测性帮助我们在特定的背景下提炼出数据潜在的规律,从而指导实践,提高效率。麦肯锡公司发布的大数据:下一个创新、竞争和生产力的前沿报告中指出:大数据的有效应用可以创造出巨大的潜在价值。运用在教育领域也势必通过多种方式创造价值,第一,在大学教育中,让原本互相分离的部门之间更加容易的获得相关的数据就可以使教学方案、教学计划、教育回馈等实现并行,极大

5、提高教学效率;第二,随着大学创造并储存更多数字形式的教育数据,应能够通过对比实验,提供更具有学习效果的教学方法;第三,利用大数据对学生进行具体的细分,可以精确的制定更具有个性化的教学方案;第四,在大学教育中利用大数据可以提供算法研究进而形成成熟的分析方法,可以改善教育决策的科学性,实现教育决策的风险最小化。大数据在大学校园里是无处不在的,网络、计算机及智能手机的普及让大学生的社交活动、在线学习,日常的信息管理等都成为大数据的主要来源。这些大数据在技术支持下将为教学本身提供数据驱动的检测,同时也给大学教育带来了深刻影响。首先,大数据时代的大学教育,学生的学习、老师的教学都发生在数字的环境中。大学

6、教育所依赖的教学工具,电子_、数字化讲坛、甚至是大学本身都将是大数据获取的平台。在这个数字平台中,大学将收集以往无法收集或即使收集起来也没有反馈的数据,如大学生在线课堂的反馈、网络课程的中途退出、电子_上的标注、图书馆的借书记录等等都将被记录并进行处理。在这一过程中,大数据有能力将数据的生成、处理分析、利用分隔开来分类利用。其次,大数据时代大学教育可以实现符合每名学生的个体需求,而不是为一组类似的学生定制的个性化学习。传统的大学教育系统是基于平均水平的设计的教学方案,那么一定会同时伤害位于正态分布曲线两侧的学生。大数据时代学生将在各自的多媒体学_台进行学习、互动,老师给的教学回馈也将是具有针对

7、性,真正实现维克托.迈克.合恩伯格所说的:实际上是“一个尺寸适合一个人”的方式。最后,通过对大数据的分析,通过概率预测优化学习内容,学习方式和学习时间等具体内容。在大学教育这个数字平台,将更全面的发挥“预测”这个大数据最重要的功能,帮助我们更加准确对学习内容、学习的方式和时间进行精准的安排设置,提高整体效率。(1)单向度反馈向多向度反馈的变革。在传统大学教育中,反馈随处可见,课后作业、课堂参与、出勤率、论文及考试成绩等分数,都是学校及老师给学生及家长的反馈,但这种反馈几乎都是单向度的,即由教师和学校指向学生和家长。这些分数代表着学生在学校的学业表现,同时社会及用人单位也依赖这些分数作为衡量学生

8、的学习行为的指标。现行的教育反馈只是对学生的学习表现进行打分,然而校方却很少评价自身,更不会全面和系统的对自身的教学进行评估,也不会对采用的_、测验和课堂讲解等教学内容和手段是否对学习有益进行衡量。大数据时代的到来正在彻底改变这一现状,大学将能够收集到过去无法获取的学习数据,并用于学习过程的处理。大数据还能使用新的方式组合数据,并充分发挥其作用以提高学习理解和学业表现,同时将_给教师和学校管理者以改善教育系统,完成校方与学生的双向反馈。在传统大学教育中,学生在阅读_过程中,有的段落和篇章进行了反复阅读,那么是因为其讲述的内容丰富有趣,还是晦涩难懂,都无从可知。学生是否在特定的段落进行了标注及笔

9、记,_这么做。学生是否在中途就已经放弃了阅读。如果是,放弃的位置是在哪里。这些问题传统方法无法给出准确答案。直到大数据时代的到来,才找到可行方案。当_出现在电脑上,上述的信息不仅可以采集还有可以进行处理,可是实现学生、教师、出版商之间的反馈。在传统大学教育中,也有专门的审核委员会对大量教材进行审核,但委员会的评估工作往往存在局限性,他们可以对内容的精确程度进行检验,并与公认的教学标准进行比较,但是缺少了解教材是否对学生有效的实证方法。在大数据时代,_出版商通过分析电子书平台上的综合数据分析,清楚地分析_中的有效内容和无效内容,以此作为完善写作的基础。在过去,_信息的反馈是单向的,即从出版商到学

10、校,在大数据时代,信息的反馈是多项进行的,实现与校方、学生、教师、出版商的多项反馈。(2)大学教育_结构的变革。大数据时代大学的教学环节必然与大数据技术紧密相连,传统教育机构的_管理机构势必作出调整与适应。第一,大学教育将出现新的职业分工,大学数据的分析、处理和在教学中应用必须有专门的技术人员来完成。由一位对冲基金分析师创建的可汗学院,大数据成为了该学院运作的核心。截止_年年底,这个非盈利_共有_名员工,其中有_人专门从事数据分析并取得了骄人的成绩。因此,专业的数据管理人员,数据分析人员,数据开发应用技术人员必将成大学教育中的新成员。第二,大学_管理机构的重组。数据之所以在大学教育中可以发挥巨

11、大的作用,其中最重要的原因就是大数据能够迅速反映知识在各个环节传递中所遇到的问题和发生的状况,具有数据价值的时效性。校方的政策执行过程中的数据、老师教授过程的数据、学生学习过程中的数据都会第一时间被收集、分析、挖掘。分析的结果也会实时呈现出来,如果还是通过传统的直线型或智能型的_结构模式,很难在有效的时间内将数据分析结果快递下去。为了适应大数据时代信心的快速响应及传播的要求,扁平化的大学_管理机构将成为大数据时代发展的趋势。(3)提供个性化的教学方案。至今为止,大学的教学方式虽然进行了很大的改变,学生可以进行诸如小组讨论等多种方式的学习,但从本质上看并没有什么不同。学生们接受相同内容的课程学习

12、,使用同样的教材,做着同样的习题。大数据时代的来临将给大学教育注入新的活力,大数据时代的预测性和前瞻性,为大学教育的个性化教学提供了可行前提。在大学校园,能够借助大数据对学生的学习情况进行记录及分析。学生普遍使用的、_、微博等社交网站、图书馆、网络课程、在线教育平台等可以记录并分析学生的每个学生的思想动态、家庭背景、考试成绩、学习过程等等。这些数据不仅可以帮助学校完成学生各自的思想教育,还能有针对性的进行专业知识的学习,从而形成系统的,有针对性的教学方案。大数据能够实现学习知识的扁平化,不需要把学科的知识按照专业、科目、年级进行严格划分,而是构建学科知识库,通过大数据来分析和预测学生的学习态度

13、、学习习惯、对知识的掌握程度、进而向每名学生提供合适的课程内容,恰当的课程进度,适宜的辅导教师及准确的课程形式。正如维克托。迈尔。舍恩伯格在大数据同行一书中举的案例:在可汗学院,教师通过控制面板取得学生的学习进度,学生也在系统中发挥积极作用。学生每一次与系统的交互都被记录下来,这些是数据用于分析,并向教师、学生及家长提供学习情况的反馈。(4)科学的教育决策方法。教育决策方法一定会紧跟大数据时代发展,利用大数据的科学方法分析决策活动,改变以往的依靠经验进行判断,采用大数据的新技术和方法进行决定,保证决策的精准性和可靠性。第一,大数据时代使决策信息的获取与处理更加科学。现代决策理论创始人伯特.西蒙

14、认为在决策的过程中至关重要的因素就是信息,信息是合理决策的生命线。大数据的信息平台为信息的收集提供了基础,大数据的数据处理技术让信息变得更加有效。决策者可以根据收集和处理过的信息,及时掌握问题的本质,做出科学的决策,同时在其后的反馈中发现决策方案的偏差,做出调整,保证教育决策的有效性和科学性。第二,定量分析与定性分析相结合的科学决策方法。以往的教育决策往往是按照决策人的经历和主观判断做出的,而忽视问题的复杂性、环境的多样性进行分析,特别是在大数据时代,教育决策呈现出很多新特点和新问题,传统的定性分析已经不能满足实际需求,定量分析则可以弥补定性分析在微观上的弱点,对备选方案进行定性和定量分析相结

15、合的基础上,可以提升备选方案的可比性,做出科学的判断。(1)大数据技术层面的挑战。大数据技术层面的挑战既包括计算机等硬件条件的制约,同时也包括大数据人才缺乏的挑战。_年_月,美国教育部发布的通过教育数据挖掘和学习分析促进教与学的报告中指出大数据在教育应用的技术挑战主要有_个方面:第一,大数据的应用基础是首先拥有大量的数据样本,那就会涉及到对海量数据的采集、分析、储存和整理的问题,包括计算机的数据处理能力、云计算的技术挑战;第二,大数据在大学教育中应用,对采集到的数据进行分析,最终得出解决问题的方法是大数据的核心环节,那必然要面对数据分析技术的挑战;第三,数据兼容性的挑战,大学教育中的数据是以多

16、种形式存在的,不同数据在不同的存储系统中有着各自的编码和格式,造成不同系统间的数据可能无法共享问题。人才短缺的挑战也不容忽视,麦肯锡公司预测美国到_年将缺乏数据分析人才_万-_万人,这些人才不仅需要具备固有的数学能力和专业知识,还要经过长时间的培训。面对中国大学教育大数据的挖掘及使用较晚,能够驾驭大学教育大数据的数据工程师也必将成为稀缺人才,从而制约着大数据在大学教育中的应用。(2)大学生个人隐私及信息的挑战。在大学教育中,我们一方面享受大数据时代带给我们的便捷和具有个性化的教学方案,同时我们也在大数据的采集中为此付出了代价。每名学生在数字化的校园已经变得完成透明,课程内容、学习的进展,甚至于

17、晚饭吃的什么都被一一记录下来,每个人似乎没有隐私可谈。虽然有一些国家和法律对已经颁布了一些隐私保_,来防止对个人信息的全面采集和长期储存。这些法律通常都会要求数据的使用者公布数据采集的对象及用途,并且必须征得本人同意后才可以使用。大数据的价值在于数据可以重复利用,但在搜集数据的初期通常不会考虑数据的下次利用。个人的教育信息是特别敏感的,它深入到每名学生的成长历程中,在教育中,可以允许通过个人数据改进学习资料、学习工具,学习方法等,但如果要使用这些数据来预测学生未来的能来,必须有更加严格的监督管理机制。那么如何保护好每名学生的个人信息,让数据的使用机构为自己的滥用行为承担责任。在这个道路中还有很

18、长的路要走,还要清除很多的障碍,面临着巨大的挑战。(3)理性对待概率预测。在大学教育中,大数据的预测将无处不在,它会以所有人为对象进行教育数据的全面收集,用于对未来的学习进行预测。比如斯坦福大学的吴恩达教授发现在一门机器学习的课程中,有超过一半的同学做错了“计算成本”的线性回归,但经统计分析在浏览过编号为830的论坛文章的学生中,则有_%不会再犯同样的错误。如有学生再犯这个错误时,就不需要学生的自行判断而是依靠大数据的预测为驱动手段,系统将自动推送这篇文章帮助学生解决问题,提高学习效果。在大数据时代诸如此类的概率预测比比皆是,那这些概率的预测是否会限制学生学习的自由选择,并最终影响到学习的效率

19、的提高。就如上面的例子,如果没有大数据的预测和驱动,有些学生可能只需要将相关知识遗忘的部分进行简单的温习,而不是需要花费大量时间进行大篇幅的阅读。如何利用旧的个人数据进行预测,预测的结果也必须理性的看待。大学生作为每个个体,都要不断的成长、发展和变化,而收集到的数据却始终保持不变,这些数据只能显示在数据收集的那个时期学生一些学习状况,那么未来的预测是否也要加入这些数据的影响呢。也就要求数据分析人员积极谨慎地对待这些数据,客观的判断这些数据信息与现在的学生是否存在着关联的关系。正如维克托。迈尔。合恩伯格在大数据同行一书中讲到:“全面教育数据带来的首个重大威胁,并不是信息发布的不当,而是束缚我们的

20、过去,否定我们进步、成长和改变的能力。”大数据时代大学教育面临以上_个方面的挑战,还要面临一些其他挑战,其一,在大学教育中大数据意识及大数据观念淡薄,缺乏一些数据公开和数据共享方面的政策和制度,导致虽然产生了大量的数据但对数据的保存、利用不够。2022年大数据时代的机遇与挑战的学习心得(二)基于大数据分析,实施个性化教学-极课学习、使用心得体会信息化、大数据是_世纪的时代标签,数据信息是宝贵的资源。因此,学校教学过程中,学生学业情况的动态总览、纵横向比较是教师备课、授课的切实依据,如何收集、分析、运用学生的学业数据呢。极课大数据应运而生。在经过近_年的学习、使用极课大数据系统后,感触颇深、体会

21、众多。下面从极课大数据是什么。有何优势。怎样充分利用。三个方面谈谈我的心得体会。一、什么是极课大数据。极课大数据是一套服务于基础教育阶段学校日常作业和考试数据采集、分析的教育智能系统,帮助一线老师提高工作效率,建立面向家庭的个性化学_台。极课大数据技术支持的大数据采集,通过高速阅卷仪,将学生的学业信息快速进行识别并传输到云端,经过相关的运算,形成各类数据报表。教师通过数据反馈,有针对性地设计学生作业、测试及练习题,并做有效性分析,了解学生个体的阶段学习情况,分析其知识缺陷并提出专一的纠错方案,持续_某一位学生或一个班级的错题流变和学业发展,对学生的能力(学习策略、知识掌握程度、学习专注度等方面

22、)进行评测,诊断学生的学习变化趋势。通过采集学生的各种学业信息,应用科学的考试分析方法,对照课程标准,诊断和评价学生的学业优势与不足,促使学校真正实现因材施教,有效促进学生的发展。极课大数据在不改变教师现有阅卷习惯、批改作业习惯的基础上,做到了极速批改、极致分析、极便响应,突破了k12教育大数据的入口和管道,构建了基础教育学业数据库。在课前,为教师形成个性化诊断数据,让课堂教学更精准;在课后,为学生自动形成个性化错题本及个性化课程学习包的智能推送,使学生的学习更有针对性。极课大数据通过采集校园小数据、沉淀教育大数据,推动教学深度变革,解放教育生产力。二、极课大数据有何优势。1、移动阅卷、教师批

23、阅方便省时传统的阅卷费时费力,而极课大数据下的智学网试卷批阅方便快捷。仅需手机和网络,便可在任何片段闲散时间都能进行网上阅卷,且在阅卷过程中,能把控各题的分值,以免_分出现;在赋分出现问题后还可以回评,赋分界面能即时显示平均分、阅卷任务等,以方便老师随时监控并调整自己的阅卷过程。图一:考试中心的阅卷界面2、自动计分、生成分析数据报表传统的试卷批改后,需要人工统分,费时费力切准确度不高,而智学网试卷批阅试卷后自动生成各类数据,如下图学情总览所示,教师、班主任、教育管理者能清楚了解学生、班级各学科成绩、最高分、最低分、排名情况、大幅进步、退步、高低分段、临界生、合格生等具体情况。图二:学情总览图三:成绩分数段统计图四:临界生统计3、试卷评讲有的放矢,提高课堂教学效率利用极课数据收集、分析,借助智学网进行试卷评讲,能极大地提高课堂教学效率和效果。如图五所示,根据智学网上所显示的每小题正确率,针对普遍问题进行讲解,并且还能知道哪些问题在此问题上出错。图五:根据正确率(得分率)统计选择性评讲4、根据学生档案、因材施教、个性化辅导智学网能将班级学生所掌握的知识点情况统计出来,此外,还能将每个学生的历次成绩、各题型分数、各知识点情况纵向比较,这对因材施教、个性化辅导提供了依据,尤其便于对优生、差生的针对性提高训练。图六:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论