版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角函数单调性与最值第1页,共17页。目标展示知识目标:正弦函数、余弦函数的单调性,最大值和最小值的概念;能力目标:会求三角函数的单调区间,会求三角函数的最值;情感目标:经历三角函数性质的探讨过程,培养学生运用函数图像分析、探究问题的能力;重、难点:利用函数周期性来研究他们的单调性及最值.第2页,共17页。1、正弦、余弦函数的定义域是什么?定义域都是 Rx6yo-12345-2-3-41y=sinx x6o-12345-2-3-41y y=cosx 自主合作第3页,共17页。2、正弦、余弦函数的值域是什么?值域都是 -1,1, 即|sin x|1,|cos x|1.第4页,共17页。3、正弦、
2、余弦函数的最小正周期是多少?正弦函数是周期函数, 都是它的周期, 最小正周期是 余弦函数是周期函数, 都是它的周期, 最小正周期是 第5页,共17页。sin(-x)= -sinx(xR)图象关于原点对称 y=sinx (xR)x6yo-12345-2-3-41是奇函数x6o-12345-2-3-41ycos(-x)= cosx(xR) 图象关于y轴对称 y=cosx (xR)是偶函数定义域关于原点对称4、正弦、余弦函数的奇偶性第6页,共17页。xyo-1234-2-31 x sinx 0 -1 0 1 0 -1探究解疑(一)正、余弦函数的单调性 1.正弦函数的单调性当x_时,曲线逐渐_,sin
3、x的单调递增区间_当x_时,曲线逐渐_sinx的单调递减区间_上升下降第7页,共17页。 2.余弦函数的单调性 x cosx - 0 -1 0 1 0 -1yxo-1234-2-31当x_时,曲线逐渐_,cosx的单调递增区间_当x_时,曲线逐渐_,cosx的单调递减区间_上升下降第8页,共17页。3.有正弦函数,余弦函数的周期性,得出结论.y=sinx (xR) , y=cosx (xR) 的单调区间单增区间单减区间y=sinxy=cosx第9页,共17页。探究(二):正、余弦函数的最值思考1:观察正弦曲线和余弦曲线,正、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?思
4、考2:当自变量x分别取何值时,正弦函数y=sinx和y=cosx取得最大值1和最小值1?第10页,共17页。x6yo-12345-2-3-41y=sinx x6o-12345-2-3-41y y=cosx 当且仅当 时取得最大值正弦函数当且仅当 时取得最大值余弦函数当且仅当 时取得最大值当且仅当 时取得最大值探究解疑(二)正、余弦函数的最值第11页,共17页。例1、利用三角函数的单调性,比较下列各组数的大小:反思提高第12页,共17页。(1) sin( ) 与 sin( )解:又 y=sinx 在 上是增函数第13页,共17页。(2) cos( ) 与 cos( )解:cos( ) =cos =cos 又cosx在 上是减函数 cos cos 从而cos( )cos( )cos( )=cos =cos 第14页,共17页。例2、下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.第15页,共17页。当堂检测1、函数 的值域是2、函数 的最小正周期是 3、函数 的最小正周期是 第16页,共17页。课堂小结1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版水利工程勘察设计合同热3篇
- 物流行业安全防护规则
- 公园户外攀岩墙施工协议
- 物业服务合同书范本
- 教育培训行业投资操作手册
- 医疗行业财务收支管理规程
- 外包售后服务协议书
- 森林防火搅拌站招标文件
- 展览馆玻璃膜施工合同
- 地铁站彩钢板维修合同
- 2024版《安全生产法》考试题库附答案(共100题)
- 2024年重庆市高考地理试卷(含答案与解析)
- 教育机构合作伙伴招募方案
- 高校实验室安全基础学习通超星期末考试答案章节答案2024年
- 大学生心理健康教育学习通超星期末考试答案章节答案2024年
- 2024年秋国家开放大学会计信息系统(本)客观题及答案
- 干部任免审批表样表
- 2024年大学班主任工作总结经典版(4篇)
- 电网工程施工安全基准风险指南
- 苏科版九年级物理上册教案:11.5机械效率
- 中医内科学智慧树知到答案2024年浙江中医药大学
评论
0/150
提交评论