2022届辽宁省凌源市第三中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
2022届辽宁省凌源市第三中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
2022届辽宁省凌源市第三中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
2022届辽宁省凌源市第三中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
2022届辽宁省凌源市第三中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1随机变量服从二项分布,且,则等于( )ABCD2曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取同学乙猜:刘云被清华大

2、学录取,张熙被北京大学录取同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( )A北京大学、清华大学、复旦大学、武汉大学B武汉大学、清华大学、复旦大学、北京大学C清华大学、北京大学、武汉大学 、复旦大学D武汉大学、复旦大学、清华大学、北京大学3现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.不同取法的种数为ABCD4已知函数,若方程恰有三个实数根,则实数的取值范围是 ( )

3、ABCD5l:与两坐标轴所围成的三角形的面积为A6B1CD36已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是( )A1B2CD7平面向量与的夹角为,则 ( )ABC0D28设集合M=0,1,2,则( )A1M B2M C3M D0M9下列四个命题中真命题是()A同垂直于一直线的两条直线互相平行B底面各边相等,侧面都是矩形的四棱柱是正四棱柱C过空间任一点与两条异面直线都垂直的直线有且只有一条D过球面上任意两点的大圆有且只有一个10从装有除颜色外完全相同的个白球和个黑球的布袋中随机摸取一球,有放回地摸取次,设摸得黑球的个数为,已知,则等于( )ABCD11已知直线,点为抛物线上的任

4、一点,则到直线的距离之和的最小值为( )A2BCD12在下列命题中,从分别标有1,2,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是;的展开式中的常数项为2;设随机变量,若,则.其中所有正确命题的序号是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若方程有实数解,则的取值范围是_.14设随机变量的分布列为为常数,则_15已知函数,且过原点的直线与曲线相切,若曲线与直线轴围成的封闭区域的面积为,则的值为_16已知点和抛物线,过的焦点且斜率为的直线与交于,两点若,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(

5、12分)已知函数,其中()求的单调区间;()若在上存在,使得成立,求的取值范围.18(12分)已知.为锐角,.(1)求的值;(2)求的值.19(12分)如图,在四棱锥中,为矩形,是以为直角的等腰直角三角形,平面平面(1)证明:平面平面;(2) 为直线的中点,且,求二面角的余弦值.20(12分)已知函数,.(1)若在处的切线与在处的切线平行,求实数的值;(2)若,讨论的单调性;(3)在(2)的条件下,若,求证:函数只有一个零点,且21(12分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线l的普通方程与曲线C

6、的直角坐标方程;(2)设直线l与曲线C交于A,B两点,求线段的长.22(10分)己知复数满足,其中,为虚数单位.(l)求:(2)若.求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为,所以,解得.即等于.故选B.2、D【解析】推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案.【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学(另外武汉大学、清华大学、北京大学、复旦大学也满足).故选:.【点睛

7、】本题考查了逻辑推理,意在考查学生的推理能力.3、C【解析】试题分析:3张卡片不能是同一种颜色,有两种情形:三种颜色或者两种颜色,如果是三种颜色,取法数为,如果是两种颜色,取法数为,所以取法总数为,故选C考点:分类加法原理与分步乘法原理【名师点晴】(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步4、C【解析】当时,画出函数图像如下图所示,由图可知,无解,不符合题意,故排除两个选项.当时,画图函数图像如下图所示,由图可知,或,解得不符合题意,故排除选

8、项,选.点睛:本题主要考查分段函数的图像与性质,考查复合函数的研究方法,考查分类讨论的数学思想方法,考查零点问题题.题目所给的分段函数当时,图像是确定的,当时,图像是含有参数的,所以要对参数进行分类讨论.在分类讨论的过程中,围绕的解的个数来进行.5、D【解析】先求出直线与坐标轴的交点,再求三角形的面积得解.【详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【点睛】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.6、C【解析】试题分析:由于垂直,不妨设,则,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C考点

9、:平面向量数量积的运算7、D【解析】先由,求出,再求出,进而可求出【详解】因为,所以,所以,所以.故选D【点睛】本题主要考查向量模的运算,熟记公式即可,属于基础题型.8、A【解析】解:由题意,集合M中含有三个元素0,1,1A选项1M,正确;B选项1M,错误;C选项3M,错误,D选项0M,错误;故选:A【点评】本题考查了元素与集合关系的判定,一个元素要么属于集合,要么不属于这个集合,二者必居其一,这就是集合中元素的确定性9、C【解析】通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的

10、公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【点睛】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像

11、来判断。10、C【解析】根据二项分布的数学期望计算,即可得出答案。【详解】根据题意可得出 ,即 所以故选C【点睛】本题考查二项分布,属于基础题。11、C【解析】分析:由抛物线的定义可知P到直线l1,l1的距离之和的最小值为焦点F到直线l1的距离详解:抛物线的焦点为F(1,0),准线为l1:x=1P到l1的距离等于|PF|,P到直线l1,l1的距离之和的最小值为F(1,0)到直线l1的距离故选:C点睛:本题主要考查了抛物线定义的应用,属于基础题.12、C【解析】根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断.【详解】对:从9张卡片中不放回地随机抽取2次,共有种可能

12、; 满足2张卡片上的数奇偶性不同,共有种可能; 根据古典概型的概率计算公式可得,其概率为,故错误;对:对写出通项公式可得, 令,解得,即可得常数项为,故正确;对:由正态分布的特点可知,故正确.综上所述,正确的有.故选:C.【点睛】本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】关于x的方程sinxcosxc有解,即csinxcosx2sin(x-)有解,结合正弦函数的值域可得c的范围【详解】解:关于x的方程sinx-cosxc有解,即csinx-cosx2sin(x-)有解,由于x为实数,则2

13、sin(x-)2,2,故有2c2【点睛】本题主要考查两角差的正弦公式、正弦函数的值域,属于中档题14、【解析】由已知得=1,解得c=,由此能求出P(0.52.5)=P(=1)+P(=2)=【详解】随机变量的分布列为P(=k)=,k=1,2,3,=1,即,解得c=,P(0.52.5)=P(=1)+P(=2)=故答案为【点睛】本题考查概率的求法,是中档题,解题时要认真审题,注意分布列的合理运用15、【解析】分析:先根据导数几何意义求切点以及切线方程,再根据定积分求封闭区域的面积,解得的值.详解:设切点,因为,所以所以当时封闭区域的面积为因此,当时,同理可得,即点睛:利用定积分求曲边图形面积时,一定

14、要找准积分上限、下限及被积函数当图形的边界不同时,要分不同情况讨论16、2【解析】利用点差法得到AB的斜率,结合抛物线定义可得结果.【详解】详解:设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,,因为M为AB中点,所以MM平行于x轴因为M(-1,1)所以,则即故答案为2.【点睛】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点, 分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】试题分析:(1)函数的单调区间与导数的符号相

15、关,而函数的导数为,故可以根据的符号讨论导数的符号,从而得到函数的单调区间.(2)若不等式 在 上有解,那么在上,.但在上的单调性不确定,故需分 三种情况讨论.解析:(1),当时,在上,在上单调递增;当时,在上;在上;所以在上单调递减,在上单调递增.综上所述,当时,的单调递增区间为,当时,的单调递减区间为,单调递增区间为.(2)若在上存在,使得成立,则在上的最小值小于.当,即时,由(1)可知在上单调递增,在上的最小值为,由,可得,当,即时,由(1)可知在上单调递减,在上的最小值为,由,可得 ;当,即时,由(1)可知在上单调递减,在上单调递增,在上的最小值为,因为,所以,即,即,不满足题意,舍去

16、.综上所述,实数的取值范围为.点睛:函数的单调性往往需要考虑导数的符号,通常情况下,我们需要把导函数变形,找出能决定导数正负的核心代数式,然后就参数的取值范围分类讨论.又不等式的恒成立问题和有解问题也常常转化为函数的最值讨论,比如:“在 上有解”可以转化为“在 上,有”,而“在恒成立”可以转化为“在 上,有”.18、(1);(2)【解析】(1)由三角函数的基本关系式,求得,再由余弦的倍角公式,即可求解.(2)由(1)知,得到,进而得到,再利用两角差的正切函数的公式,即可求解.【详解】(1)因为,且为锐角,所以, 因此;(2)由(1)知,又,所以,于是得,因为.为锐角,所以,又,于是得, 因此,

17、 故.【点睛】本题主要考查了三角函数的化简、求值问题,其中解答中熟练应用三角函数的基本关系式,以及两角差的正切公式,以及余弦的倍角公式是解答的关键,着重考查了推理与运算能力,属于基础题.19、()见解析;().【解析】()由为矩形,得,再由面面垂直的性质可得平面,则,结合,由线面垂直的判定可得平面,进一步得到平面平面; ()取中点O,分别以所在直线为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值,再由平方关系求得二面角的正弦值【详解】()证明:为矩形,平面平面,平面平面,平面,则,又,平面,而平面,平面平面;()取中点O,分别以所在直线为轴建立

18、空间直角坐标系,由,是以为直角的等腰直角三角形,得:,设平面的一个法向量为,由,取,得;设平面的一个法向量为,由,取,得.二面角的正弦值为【点睛】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解二面角,是中档题20、 (1) (2)见解析(3)见解析【解析】分析:(1)先求一阶导函数,用点斜式写出切线方程(2)先求一阶导函数的根,求解或的解集,判断单调性。(3)根据(2)的结论,求出极值画出函数的示意图,分析函数只有一个零点的等价条件是极小值大于零,函数在是减函数,故必然有一个零点。详解:(1)因为,所以;又。由题意得,解得 (2),其定义域为,又,令或。当即时,函数与随的变化情况如下:当时,当时,。所以函数在单调递增,在和单调递减 当即时,所以,函数在上单调递减 当即时,函数与随的变化情况如下:当时,当时,。所以函数在单调递增在和 上单调递减(3)证明:当时,由知,的极小值为,极大值为. 因为且又由函数在是减函数,可得至多有一个零点又因为,所以 函数只有一个零点, 且.点睛:利用导数求在某点切线方程利用,即可,方程的根、函数的零点、两个函数图像的交点三种思想的转化,为解题思路提供了灵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论