版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将4名实习教师分配到高一年级三个班实习,每班至少安排一名教师,则不同的分配方案有( )种A1
2、2B36C72D1082已知复数,若是纯虚数,则实数等于( )A2B1C0或1D-13给出四个函数,分别满足;,又给出四个函数图象 正确的匹配方案是 ( )A. 丁 乙 丙 甲 B. 乙 丙 甲 丁C. 丙 甲 乙 丁 D. 丁 甲 乙 丙4已知为的一个对称中心,则的对称轴可能为( )ABCD5已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为和(如图所示),那么对于图中给定的和,下列判断中一定正确的是()A在时刻,两车的位置相同B时刻后,甲车在乙车后面C在时刻,两车的位置相同D在时刻,甲车在乙车前面6随机变量服从正态分布,且.已知,则函数图象不经过第
3、二象限的概率为( )A0.3750B0.3000C0.2500D0.20007下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间22,30)内的概率为()A0.2B0.4C0.5D0.68在的展开式中,含的项的系数是( )A-832B-672C-512D-1929的展开式中的系数是( )A58B62C52D4210已知展开式中常数项为1120,实数是常数,则展开式中各项系数的和是ABCD11函数f(x)=13ax3Aa1Ba1Ca2Da212 “不等式成立”是“不等式成立”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小
4、题,每小题5分,共20分。13不等式的解集是_.14若定义在上的函数,则_15已知幂函数的图象过点,则_16已知集合,若实数满足:对任意的,均有,则称是集合的“可行数对”以下集合中,不存在“可行数对”的是_; ; 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.若是的极值点.(1)求在上的最小值;(2)若不等式对任意都成立,其中为整数,为的函数,求的最大值.18(12分)已知直线过点M(3,3),圆()求圆C的圆心坐标及直线截圆C弦长最长时直线的方程;()若过点M直线与圆C恒有公共点,求实数m的取值范围19(12分)有5人进入到一列有7节车厢的地铁中,分别
5、求下列情况的概率(用数字作最终答案):(1)恰好有5节车厢各有一人;(2)恰好有2节不相邻的空车厢;(3)恰好有3节车厢有人20(12分)脐橙营养丰富,含有人体所必需的各类营养成份,若规定单个脐橙重量(单位:千克)在0.1,0.3)的脐橙是“普通果”,重量在0.3,0.5)的磨橙是“精品果”,重量在0.5,0.7的脐橙是“特级果”,有一果农今年种植脐橙,大获丰收为了了解脐橙的品质,随机摘取100个脐橙进行检测,其重量分别在0.1,0.2),0.2,0.3),0.3,0.4),0.4,0.5),0.5,0.6),0.6,0.7中,经统计得到如图所示频率分布直方图(1)将频率视为概率,用样本估计总
6、体现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为0.4,0.5),0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X表示重量在0.5,0.6)内的脐橙个数,求X的分布列及数学期望21(12分)某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立
7、()记10个水果中恰有2个不合格品的概率为,求取最大值时p的值;()现对一箱水果检验了10个,结果恰有2个不合格,以()中确定的作为p的值已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用()若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;()以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?22(10分)甲乙两人报名参加由某网络科技公司举办的“技能闯关”双人电子竞技比赛,比赛规则如下:每一轮“闯关”结果都采取计分制
8、,若在一轮闯关中,一人过关另一人未过关,过关者得1分,未过关得分;若两人都过关或都未过关则两人均得0分.甲、乙过关的概率分别为和,在一轮闯关中,甲的得分记为.(1)求的分布列;(2)为了增加趣味性,系统给每位报名者基础分3分,并且规定出现一方比另一方多过关三轮者获胜,此二人比赛结束.表示“甲的累积得分为时,最终认为甲获胜”的概率,则,其中,令.证明:点的中点横坐标为;(3)在第(2)问的条件下求,并尝试解释游戏规则的公平性.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:第一步从名实习教师中选出名组成一个复合
9、元素,共有种,第二步把个元素(包含一个复合元素)安排到三个班实习有,根据分步计数原理不同的分配方案有种,故选B考点:计数原理的应用2、B【解析】分析:由复数是纯虚数,得实部等于0且虚部不等于0.求解即可得到答案.详解:复数是纯虚数,解得.故选B.点睛:此题考查复数的概念,思路:纯虚数是实部为0.虚部不为0的复数.3、D【解析】四个函数图象,分别对应甲指数函数,乙对数函数,丙幂函数,丁正比例函数;而满足是正比例函数;是指数函数;是对数函数;是幂函数,所以匹配方案是丁 甲 乙 丙,选D。4、B【解析】由题意首先确定的值,然后求解函数的对称轴即可.【详解】由题意可知,当时,据此可得:,令可得,则函数
10、的解析式为,函数的对称轴满足:,解得:,令可知函数的一条对称轴为,且很明显选项ACD不是函数的对称轴.本题选择B选项.【点睛】本题主要考查三角函数解析式的求解,三角函数对称轴方程的求解等知识,意在考查学生的转化能力和计算求解能力.5、D【解析】根据图象可知在前,甲车的速度高于乙车的速度;根据路程与速度和时间的关系可得到甲车的路程多于乙车的路程,从而可知甲车在乙车前面.【详解】由图象可知,在时刻前,甲车的速度高于乙车的速度由路程可知,甲车走的路程多于乙车走的路程在时刻,甲车在乙车前面本题正确选项:【点睛】本题考查函数图象的应用,关键是能够准确选取临界状态,属于基础题.6、C【解析】图象不经过第二
11、象限,随机变量服从正态分布,且,函数图象不经过第二象限的概率为,故选C.7、B【解析】区间22,31)内的数据共有4个,总的数据共有11个,所以频率为14,故选B8、A【解析】求出展开式中 的系数减2倍的系数加的系数即可.【详解】含的项的系数即求展开式中 的系数减2倍的系数加的系数即含的项的系数是故选A.【点睛】本题考查二项式定理,属于中档题9、D【解析】由题意利用二项展开式的通项公式,赋值即可求出【详解】的展开式中的系数是.选D.【点睛】本题主要考查二项式定理的展开式以及赋值法求展开式特定项的系数10、C【解析】分析:由展开式通项公式根据常数项求得,再令可得各项系数和详解:展开式通项为,令,
12、则,所以展开式中各项系数和为或故选C点睛:赋值法在求二项展开式中系数和方面有重要的作用,设展开式为,如求所有项的系数和可令变量,即系数为,而奇数项的系数和为,偶数项系数为,还可以通过赋值法证明一些组合恒等式11、D【解析】根据fx单调递增可知fx0在1,2【详解】由题意得:ffx在1,2上单调递增等价于:fx即:ax2当x1,2时,2x本题正确选项:D【点睛】本题考查根据函数在区间上的单调性求解参数范围的问题,关键是能够将问题转化为恒成立问题,从而利用分离变量的方式来进行求解.12、A【解析】分别求解不等式与再判定即可.【详解】可得,解得.又解得.故“不等式成立”是“不等式成立”的充分不必要条
13、件.故选:A【点睛】本题主要考查了分式与二次不等式的求解以及充分必要条件的判定.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接去掉绝对值即可得解.【详解】由去绝对值可得即,故不等式的解集是.【点睛】本题考查了绝对值不等式的解法,属于基础题.14、【解析】由定积分的几何意义可得,是以原点为圆心,以为半径的圆的面积的一半,故答案为.15、3【解析】先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.【详解】设,由于图象过点,得,故答案为3.【点睛】本题考査幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.16、【解析】由题意
14、,问题转化为与选项有交点,代入验证,可得结论【详解】由题意对任意的,均有,则,即与选项有交点,对,与有交点,满足;对,的图形在的内部,无交点,不满足;对,的图形在的外部,无交点,不满足;对,与有交点,满足;故答案为.【点睛】本题考查曲线与方程的定义的应用,考查了理解与转化能力,将问题转化为与选项有交点是关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2;(2)2.【解析】分析:(1)求出函数的导数,求出a的值,根据函数的单调性求出函数的最小值即可;(2)问题转化为,令,根据函数的单调性求出k的范围即可.详解:(1),由是的极值点,得,.易知在上单调递减,在上单调递
15、增,所有当时,在上取得最小值2.(2)由(1)知,此时,令,令,在单调递增,且,在时,由,又,且,所以的最大值为2.点睛:本题考查了函数的单调性、最值问题,考查了导数的应用以及函数恒成立问题,是一道综合题.18、()(0,-2),;().【解析】()利用直径为最长弦;()利用点与圆的位置关系【详解】()圆C方程标准化为:圆心C的坐标为(0,2)直线截圆C弦长最长,即过圆心,故此时的方程为:,整理得:;()若过点M的直线与圆C恒有公共点,则点M在圆上或圆内,得【点睛】此题考查了直线与圆,点与圆的位置关系,属于基础题.19、(1)3602401;(2)360016807;(3)【解析】(1)5人进
16、入到一列有7节车厢的地铁中,基本事件总数n=75=16807,恰好有5节车厢各有一人包含的基本事件的个数m(2)恰好有2节不相邻的空车厢包含的基本事件的个数m2=A(3)恰好有3节车厢有人包含的基本事件个数m3=C【详解】(1)5人进入到一列有7节车厢的地铁中,基本事件总数n=7恰好有5节车厢各有一人包含的基本事件的个数m1所以恰好有5节车厢各有一人的概率p1(2)恰好有2节不相邻的空车厢包含的基本事件的个数m2所以恰好有2节不相邻的空车厢的概率P2(3)恰好有3节车厢有人包含的基本事件个数m3所以恰好有3节车厢有人的概率p3【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运
17、算求解能力,是基础题,计算概率类题目的时候,可以先将所有的可能种类的数目算出,然后算出符合题意的可能种类的数目,两者相除,即可算出概率。20、(1)(2)见解析【解析】(1)根据题意,先得到随机摘取一个脐橙,是“精品果”的概率为0.5,并且随机摘取5个脐橙,其中“精品果”的个数符合二项分布,再根据二项分布的概率公式,列出式子,得到答案.(2)先判断出可取的值为0,1,2,3,分别计算出其概率,然后列出概率分布列,再根据随机变量的数学期望公式,计算出其数学期望.【详解】(1)从从脐橙果园中,随机摘取5个脐橙,其中“精品果”的个数记为Y,由图可知,随机摘取一个脐橙,是“精品果”的概率为:0.2+0
18、.30.5,YB(5,),随机摘取5个脐橙,恰有3个是“精品果”的概率为:P(Y3)(2)依题意,抽取10个脐橙,重量为0.3,0.4),0.4,0.5)的个数分别为6和4,X的可能取值为0,1,2,3,P(X0),P(X1),P(X2),P(X3),X的分布列为:X0123PE(X)【点睛】本题考查满足二项分布的概率问题,以及随机变量的概率分布列和数学期望,属于中档题.21、 ()0.2 () () ()8【解析】()记10个水果中恰有2个不合格品的概率为,求得,利用导数即可求解函数的单调性,进而求得函数的最值.()由()知,()中,依题意知,进而利用公式,即可求解; ()如果对余下的水果作检验,得这一箱水果所需要的检验费为120元,列出相应的不等式,判定即可得到结论.【详解】()记10个水果中恰有2个不合格品的概率为f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牧草种植收购协议
- 2024年度二手房屋买卖及装修改造合同3篇
- 二零二四年智能工厂建设项目合同
- 2024年度房屋买卖合同标的房产交易时间2篇
- 2024年度艺术品买卖复杂合同2篇
- 2024电子支付清结算系统建设合同3篇
- 2024年企业品牌形象策划与推广合同2篇
- 四方合同范本工作范文
- 员工培训管理分析总结报告
- 2024年度科研机构服务器租赁及高性能计算服务协议2篇
- 预案演练知识培训
- 第三单元 勇担社会责任(复习课件)-八年级道德与法治上册同步备课系列(统编版)
- 适用于2024年《语言学概论》课程的教案创新策略
- 中小学学校国家智慧教育云平台应用项目实施方案
- 2024-2030年中国干细胞医疗行业趋势分析及投资战略研究报告
- 2024版2024年【教案+】初中美术《铅笔淡彩》
- 网络安全管理操作手册
- 人教版小学数学六年级上册《扇形的认识》课件
- 通信工程施工方案
- 2024年湖南省永州市宁远县自来水公司招聘26人历年高频难、易错点500题模拟试题附带答案详解
- 部编人教版2022-2023学年度第一学期四年级道德与法治上册期末测试卷及答案
评论
0/150
提交评论