版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在区间 上的图象如图所示, ,则下列结论正确的是( )A在区间上,先减后增且B在区间上,先减后增且C在区间上,递减且D在区间上,递减且2为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图
2、),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是( )A12B24C48D563在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A甲地:总体均值为3,中位数为4B乙地:总体均值为1,总体方差大于0C丙地:中位数为2,众数为3D丁地:总体均值为2,总体方差为34一个几何体的三视图如图所示,其体积为( )ABCD5下列结论中正确的是( )A导数为零的点一定是极值点B如果在附近的左侧,右端,那么是极大值
3、C如果在附近的左侧,右端,那么是极小值D如果在附近的左侧,右端,那么是极大值6甲乙丙丁四位同学一起去老师处问他们的成绩.老师说:“你们四人中有2位优秀,2位良好,我现在给丙看甲乙的成绩,给甲看乙的成绩,给丁看丙的成绩.”看后丙对大家说:“我还是不知道我的成绩.”根据以上信息,则下列结论正确的是( )A甲可以知道四人的成绩B丁可以知道自己的成绩C甲丙可以知道对方的成绩D乙丁可以知道自己的成绩7已知随机变量的取值为,若,则( )ABCD8点的直角坐标化成极坐标为( )ABCD9已知有相同两焦点F1、F2的椭圆+ y2=1和双曲线- y2=1,P是它们的一个交点,则F1PF2的形状是( )A锐角三角
4、形B直角三角形C钝有三角形D等腰三角形10已知复数,若,则实数的值为( )AB6CD11直线是圆的一条对称轴,过点作斜率为1的直线,则直线被圆所截得的弦长为 ( )ABCD12函数(为自然对数的底数)的递增区间为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若,则_.14已知的顶点,分别为双曲线左、右焦点,顶点在双曲线上,则的值等于_15用0,1,3,5,7这五个数字可以组成_个无重复数字的五位数.16如图所示,阴影部分为曲线与轴围成的图形,在圆:内随机取一点,则该点取自阴影部分的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)甲、乙去某
5、公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(2)请分析比较甲、乙两人谁的面试通过的可能性较大?18(12分)已知函数是上的奇函数(为常数),.(1)求实数的值;(2)若对任意,总存在,使得成立,求实数的取值范围;(3)若不等式成立,求证实数的取值范围.19(12分)已知数列的前项和满足,且。(1)求数列的通项公式;(2)若,求数列的前项和。20(12分)如图为某一几何体
6、的展开图,其中是边长为的正方形,点及共线.(1)沿图中虚线将它们折叠起来,使四点重合,请画出其直观图,试问需要几个这样的几何体才能拼成一个棱长为的正方体?(2)设正方体的棱的中点为,求平面与平面所成二面角(锐角)的余弦值.(3)在正方体的边上是否存在一点,使得点到平面的距离为,若存在,求出的值;若不存在,请说明理由.21(12分)某中学将444名高一新生分成水平相同的甲、乙两个“平行班”,每班54人陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图)记成绩不低于94分者为“成绩优
7、秀”根据频率分布直方图填写下面44列联表,并判断能否在犯错误的概率不超过445的前提下认为:“成绩优秀”与教学方式有关甲班(A方式)乙班(B方式)总计成绩优秀成绩不优秀总计附:K4n(ad-bc)P(K4k)4454454444454445k4444447447464844544422(10分)在10件产品中,有3件一等品,7件二等品,.从这10件产品中任取3件,求:取出的3件产品中一等品件数X的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由定积分,微积分基本定理可得:f(t)dt表示曲线f(t)
8、与t轴以及直线t0和tx所围区域面积,当x增大时,面积增大,减小,g(x)减小,故g(x)递减且g(x)0,得解【详解】由题意g(x)f(t)dt,因为x(0,4),所以t(0,4),故f(t)0,故f(t)dt的相反数表示曲线f(t)与t轴以及直线t0和tx所围区域面积,当x增大时,面积增大,减小,g(x)减小,故g(x)递减且g(x)0,故选:D【点睛】本题考查了定积分,微积分基本定理,属中档题2、C【解析】试题分析:根据题意可知,第组的频数为,前组的频率和为,所以抽取的学生总人数为,故选C.考点:频率分布直方图与频数3、D【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天
9、)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差4、C【解析】由三视图还原原几何体,可知该几何体是直三棱柱剪去一个角,其中为等腰直角三角形,再由棱锥体积剪去棱锥体积求解.【详解】解:由三视图还原原几何体如图,该几何体是直三棱柱剪去一个角,其中为等腰直角三角形,该几何体的体积,故选:C.【点睛】本题考查由三视图求体积,关键是由三视图还原几何体,是中档题.5、B【解析】根
10、据极值点的判断方法进行判断.【详解】若,则,但是上的增函数,故不是函数的极值点.因为在的左侧附近,有,在的右侧附近,有,故的左侧附近,有为增函数,在的右侧附近,有为减函数,故是极大值.故选B.【点睛】函数的极值刻画了函数局部性质,它可以理解为函数图像具有“局部最低(高)”的特性,用数学语言描述则是:“在的附近的任意 ,有()” 另外如果在附近可导且的左右两侧导数的符号发生变化,则必为函数的极值点,具体如下(1)在的左侧附近,有,在的右侧附近,有,则为函数的极大值点;(1)在的左侧附近,有,在的右侧附近,有,则为函数的极小值点;6、B【解析】根据题意可逐句进行分析,已知四人中有2位优秀,2位良好
11、,而丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好,接下来,由上一步的结论,当甲知道乙的成绩后,就可以知道自己的成绩,同理,当丁知道丙的成绩后,就可以知道自己的成绩,从而选出答案.【详解】由丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好;当甲知道乙的成绩后,就可以知道自己的成绩,但是甲不知道丙和丁的成绩;当丁知道丙的成绩后,就可以知道自己的成绩,但是丁不知道甲和乙的成绩;综上,只有B选项符合.故选:B.【点睛】本题是一道逻辑推理题,此类题目的推理方法是综合法和分析法,逐条分析题目条件语句即可,属于中等题.7、C【解析】设,则由,列
12、出方程组,求出,即可求得【详解】设,又由得,故选:C.【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题8、D【解析】分别求得极径和极角,即可将直角坐标化为极坐标.【详解】由点M的直角坐标可得:,点M位于第二象限,且,故,则将点的直角坐标化成极坐标为.本题选择D选项.【点睛】本题主要考查直角坐标化为极坐标的方法,意在考查学生的转化能力和计算求解能力.9、B【解析】根据椭圆和双曲线定义:又;故选B10、D【解析】根据题目复数,且,利用复数的除法运算法则,将复数z化简成的形式,再令虚部为零,
13、解出的值,即可求解出答案【详解】,则故答案选D【点睛】本题主要考查了利用复数的除法运算法则化简以及根据复数的概念求参数11、C【解析】由是圆的一条对称轴知,其必过圆心,因此,则过点斜率为1的直线的方程为,圆心到其距离,所以弦长等于,故选C12、D【解析】,由于恒成立,所以当时,则增区间为. ,故选择D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用组合数的性质公式可以得到两个方程,解方程即可求出的值.【详解】因为,所以有或.当时, ,方程无实根;当时, ,综上所述:故答案为:【点睛】本题考查了组合数的性质公式,考查了解方程的能力,属于基础题.14、【解析】由题意得,,再利用
14、正弦定理进行求解即可.【详解】解:由题意得,,.故答案为:.【点睛】本题考查双曲线的性质和应用,结合了正弦定理的应用,属于中档题.15、96【解析】先排无重复数字的五位数的万位数,再排其余四个数位,运算即可得解.【详解】解:先排无重复数字的五位数的万位数,有4种选择,再排其余四位,有种选择,故无重复数字的五位数的个数为,故答案为:.【点睛】本题考查了排列组合中的特殊位置优先处理法,属基础题.16、【解析】分析:由题求出圆的面积,根据定积分求出曲线与轴围成的图形的 面积,利用几何概型求出概率.详解:由题圆:的面积为 曲线与轴围成的图形的面积为 故该点取自阴影部分的概率为.即答案为.点睛:本题考查
15、几何概型,考查利用定积分求面积,是缁.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) 甲、乙的分布列见解析;甲的数学期望2、乙的数学期望2; (2)甲通过面试的概率较大【解析】(1)设出甲、乙正确完成面试题的数量分别为X,Y,由于XH(6,3,4),YB3,23(2)由于均值相等,可通过比较各自的方差.【详解】(1)设X为甲正确完成面试题的数量,Y为乙正确完成面试题的数量,依题意可得:XH(6,3,4),P(X=1)=C41CX的分布列为:X123P131EX=11YB3,P(Y=0)=C30P(Y=2)=C32Y的分布列为:Y0123P1248EY=01(2)D
16、X=1DY=np(1-p)=32DXDY,甲发挥的稳定性更强,则甲通过面试的概率较大【点睛】本题考查超几何分布和二项分布的应用、期望和方差的计算,考查数据处理能力,求解时注意概率计算的准确性.18、(1).(2).(3)【解析】因为函数是R上的奇函数,令可求a;对任意,总存在,使得成立,故只需满足值域是的值域的子集;由不等式得,构造利用单调性可求解正实数t的取值范围【详解】(1)因为为上的奇函数,所以,即,解得得,当时,由得为奇函数,所以.(2)因为,且在上是减函数,在上为增函数所以在上的取值集合为.由,得是减函数,所以在上是减函数,所以在上的取值集合为.由“任意,总存在,使得成立”在上的取值
17、集合是在上的取值集合的子集,即.则有,且,解得:.即实数的取值范围是.(3)记,则,所以是减函数,不等式等价于,即,因为是减函数,所以,解得,所以实数的取值范围是.【点睛】本题主要考查了函数最值的求法,通过子集的关系求参数的范围,构造函数求参数范围,属于难题19、 (1) (2) 【解析】(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.【详解】解:(1)当时,当时,是以为首项,为公差的等差数列,;(2)由(1)得,。【点睛】本小题主要考查利用求数列的通项公式,考查裂项求和法,属于中档题.20、(1)直观图见解析,3个;(2);(3)不存在【解析】(1)先还原为一个四棱锥,
18、在正方体中观察;(2)延长与延长线交于点,连接,则为平面与平面的交线,作出二面角的平面角,计算即可;(3)假设点存在,作出点到平面的垂线段,然后计算的长,若,则点在边上,否则不在边上【详解】(1)图1图1左边是所求直观图,放到图1右边正方体中,观察发现要3个这样的四棱锥才能拼成一个正方体(2)图2如图(2)延长与延长线交于点,连接,则为平面与平面的交线,作于,连接,平面,平面,又,平面,是二面角的平面角,是中点,即,是中点,正方体棱长为6,中,(3)假设存在点满足题意,图3如图3,作于,平面,而,平面的长就是点到平面的距离,由,得,不在线段上,假设错误,满足题意的点不存在【点睛】本题考查多面体的展开图,考查二面角、点到平面的距离立体几何中求角时要作出这个角的“平面角”,并证明,然后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑木材质量评估行业市场调研分析报告
- 蒸汽拖把蒸汽清洁器械项目运营指导方案
- 答辩魔法书:轻松搞定-高校学术答辩全方位指南
- 医疗分析仪器产品供应链分析
- 狗用驱虫剂商业机会挖掘与战略布局策略研究报告
- 废物再生行业经营分析报告
- 地质勘探行业经营分析报告
- 矫形袜项目营销计划书
- 医疗设备包装行业营销策略方案
- 冷链乳制品行业经营分析报告
- 2022年小学数学因数与倍数、质数与合数练习题答案2
- 超星尔雅学习通《就业指导》章节测试答案
- 月度会议ppt模板
- 成都银花丝首饰消费特征分析
- 当当网与电子商务47条标准
- 能力测试PPT课件
- 社区卫生服务中心安全生产自查表
- 不“管资产”,如何“管资本”
- 喷粉检验标准
- 【案例】万福生科财务造假案例分析
- 超高层框架核心筒ansys建模
评论
0/150
提交评论