2022年四川省仁寿县铧强中学数学高二第二学期期末经典模拟试题含解析_第1页
2022年四川省仁寿县铧强中学数学高二第二学期期末经典模拟试题含解析_第2页
2022年四川省仁寿县铧强中学数学高二第二学期期末经典模拟试题含解析_第3页
2022年四川省仁寿县铧强中学数学高二第二学期期末经典模拟试题含解析_第4页
2022年四川省仁寿县铧强中学数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,是的导函数,则函数的一个单调递减区间是( )ABCD2下列关于回归分析的说法中,正确结论的个数为()(1)回归直线必过样本点中;(2)残差图中残差点所在的水平带状区域越宽,则回归方程的预报精度越高;(3)残差平方和越小的模型

2、,拟合效果越好;(4)用相关指数来刻画回归效果,越大,说明模型的拟合效果越好A4B3C2D13某射击选手每次射击击中目标的概率是0.8,这名选手在10次射击中,恰有8次击中目标的概率为ABCD4若X是离散型随机变量,P(X=x1)=23,P(X=x2)=1A53B73C35在九章算术中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为( )ABCD6抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为ABCD7已知x,y的取值如下表,从散点图知,x,y线性相关,且y=0.6x+a,则下列说法正确的是(x12

3、34y1.41.82.43.2A回归直线一定过点(2.2,2.2)Bx每增加1个单位,y就增加1个单位C当x=5时,y的预报值为3.7Dx每增加1个单位,y就增加0.7个单位8已知函数若g(x)存在2个零点,则a的取值范围是A1,0)B0,+)C1,+)D1,+)9函数y=sin2x的图象可能是ABCD10已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为和(如图所示),那么对于图中给定的和,下列判断中一定正确的是()A在时刻,两车的位置相同B时刻后,甲车在乙车后面C在时刻,两车的位置相同D在时刻,甲车在乙车前面11西游记三国演义水浒传和红楼梦是中国古

4、典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过西游记或红楼梦的学生共有90位,阅读过红楼梦的学生共有80位,阅读过西游记且阅读过红楼梦的学生共有60位,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为( )ABCD12同学聚会上,某同学从爱你一万年,十年,父亲,单身情歌四首歌中选出两首歌进行表演,则爱你一万年未选取的概率为( )A B C D二、填空题:本题共4小题,每小题5分,共20分。13设函数,,则函数的递减区间是_14已知为椭圆上任意一点,点,分别在直线与上,且,若为定值,则椭圆的离心率为_.15若幂函数为上的增

5、函数,则实数m的值等于_ 16已知函数,若关于的方程在区间内有两个实数解,则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)从5名男生和4名女生中选出4人去参加座谈会,问:(1)如果4人中男生和女生各选2人,有多少种选法?(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?(3)如果4人中必须既有男生又有女生,有多少种选法?18(12分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取

6、平均数,两个班学生的平均成绩均在,按照区间,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.19(12分)在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀. 经计算样本的平均值,标准差. 为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判 ; ; 评判规则:若同时满足上述三个不等式,则被评为

7、优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷. (1)试判断该份试卷被评为哪种等级;(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.20(12分)设圆的圆心为A,直线过点B(1,0)且与轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.()证明:为定值,并写出点E的轨迹方程; ()设点E的轨迹为曲线C1,直线交C1于M,N两点,过B且与垂直的直线与C1交于P,Q两点, 求证:是定值,并求出该定值.21(12分)一个盒子装有

8、六张卡片,上面分别写着如下六个函数:,(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.22(10分)设不等式|2x-1|1的解集为M,且aM,bM.(1)试比较ab+1与a+b的大小;(2)设maxA表示数集A中的最大数,且h=max2参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】,令,得:,单调递减区

9、间为故选2、B【解析】利用回归分析的相关知识逐一判断即可【详解】回归直线必过样本点中,故(1)正确残差图中残差点所在的水平带状区域越窄,则回归方程的预报精度越高,故(2)错误残差平方和越小的模型,拟合效果越好,故(3)正确用相关指数来刻画回归效果,越大,说明模型的拟合效果越好,故(4)正确所以正确结论的个数为3故选:B【点睛】本题考查的是回归分析的相关知识,较简单.3、A【解析】由题意可知,选手射击属于独立重复事件,属于二项分布,按照二项分布求概率即可得到答案.【详解】设为击中目标的次数,则,从而这名射手在10次射击中,恰有8次击中目标的概率为选A.【点睛】本题考查独立重复事件发生的概率,考查

10、二项分布公式的运用,属于基础题.4、C【解析】本题考查期望与方差的公式,利用期望及方差的公式,建立方程,即可求得结论【详解】E(X)=2x1=1xx故选C.考点:离散型随机变量的期望方差.5、C【解析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是,四个面都是直角三角形的三棱锥有46个,根据古典概型的概率公式进行求解即可求得【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是,以A为顶点的四个面都是直角三角形的三棱锥有:共个同理以为顶点的也各有个,但是,所有列举的三棱锥均出现次,四个面都是直角三角形的三棱锥有个,所求的概率是故选:C【点睛】本题主要考查了古典概

11、型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.6、C【解析】求MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA(1)=5+1=6,|AF|=5,MAF周长的最小值为11,故答案为:C7、C【解析】由已知求得样本点的中心的坐标,代入线性回归方程即可求得a值,进一步求得线性回归方程,然后逐一分析四个选项即可得答案【详解】解:由已

12、知得,x=1+2+3+44=2.5,由回归直线方程y=0.6x+a恒过样本中心点(2.5,2.2),得2.2=0.62.5+回归直线方程为yx每增加1个单位,y就增加1个单位,故B错误;当x5时,y的预测值为3.1,故C正确;x每增加1个单位,y就增加0.6个单位,故D错误正确的是C故选C【点睛】本题考查线性回归直线方程,解题关键是性质:线性回归直线一定过点(x8、C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,

13、从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.9、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因

14、为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复10、D【解析】根据图象可知在前,甲车的速度高于乙车的速度;根据路程与速度和时间的关系可得到甲车的路程多于乙车的路程,从而可知甲车在乙车前面.【详解】由图象可知,在时刻前,甲车的速度高于乙车的速度由路程可知,甲车走的路程多于乙车走的路程在时刻,甲车在乙车前面本题正确选项:【点睛】本题

15、考查函数图象的应用,关键是能够准确选取临界状态,属于基础题.11、C【解析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过西游记的学生人数为90-80+60=10,则其与该校学生人数之比为10100=0.1故选C【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养采取去重法,利用转化与化归思想解题12、B【解析】,所以选 B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,如图所示,其递减区间是14、【解析】设,求出M,N的坐标,得出关于的式子,根据P在椭圆上得到的关系,进而求出离心率.【详解】设,则直线PM的方程为,直线PN的方程为,联立方程组,解

16、得,联立方程组,解得,则又点P在椭圆上,则有,因为为定值,则,.【点睛】本题考查椭圆离心率的求法,有一定的难度.15、4【解析】由函数为幂函数得,求出的值,再由幂函数在上是增函数求出满足条件的值.【详解】由幂函数为幂函数,可得,解得或0,又幂函数在区间上是增函数, ,时满足条件,故答案为4.【点睛】本题主要考查幂函数的定义与性质,意在考查对基础知识的掌握与应用,属于中档题. 高考对幂函数要求不高,只需掌握简单幂函数的图象与性质即可16、.【解析】注意到,.则.易知,在区间 上单调递增,在区间上单调递减,在 处取得最小值.故,且 在区间 上单调递增.,.当 、在区间 上只有一个交点,即的图像与

17、的图像相切时, 取最大值.不妨设切点坐标为 ,斜率为 又点在 上,于是, 联立式、解得,.从而,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)30;(2)91种;(3)120种.【解析】试题分析:(1)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(2)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(3)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案试题解析:(1);(2)方法1:(间接法)

18、在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为:(种);方法2:(直接法)甲在内乙不在内有种,乙在内甲不在内有种,甲、乙都在内有种,所以男生中的甲与女生中的乙至少有1人在内的选法共有:(种).(3)方法1:(间接法)在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为:(种);方法2:(直接法)分别按含男1,2,3人分类,得到符合条件的选法总数为:(种).点睛:(1)解排列组合问题要遵循两个原则:按元素(或位置)的性质进行分类;按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位

19、置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组注意各种分组类型中,不同分组方法的求解18、 (1) 有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)分布列见解析. 【解析】试题分析:(1)依题意得,则有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)由题意可得随机变量的所有可能取值为且,据此可得分布列,计算数学期望.试题解析:(1)依题意得有90%以上的把握认为“数学成绩优秀与教学改革有关”(2)从乙班分数段中抽人数分别为2,3,2依题意随机变量的所有可能取值为,则分布列:所以19、(1)该份试卷应被评为合格试

20、卷;(2)见解析【解析】(1)根据频数分布表,计算,的值,由此判断出“该份试卷应被评为合格试卷”.(2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.【详解】(1), ,因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷. (2)50人中成绩一般、良好及优秀的比例为,所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0,1,2,3 ;. 所以随机变的分布列为0123故.【点睛】本小题主要考查正态分布的概念,考查频率的计算,考查超几何分布的分布列以及数学期望的计算,属于中档题.20、(I)();(II)【解析】(I)根据几何关系,即可证明为定值,再利用椭圆的定义即可求出点E的轨迹方程;()利用点斜式设出直线的方程,与椭圆方程联立方程组,得到关于的一元二次方程,利用根与系数关系以及弦长公式表示出,同理可得,代入中进行化简即可证明为定值。【详解】(I)因为,故,所以,故.又圆的标准方程为,从而,所以,由题设得,由椭圆定义可得点的轨迹方程为:(). (II)依题意:与轴不垂直,设的方程为,.由得,.则,.所以. 同理: 故(定值)【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论