版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 基于子空间域的自适应小字典的语音增强 裴俊华 贾海蓉Key: 语音增强; 小字典; 子空间; K?SVD; OMP; 阈值: TN912.35?34 : A : 1004?373X(2019)01?0046?05Abstract: Since the traditional speech enhancement algorithm of small dictionary has the problem of speech distortion for noise elimination, a speech enhancement algorithm based on adaptive sma
2、ll dictionary in subspace domain is proposed. A over?completed small dictionary is constructed by using the eigenvalues of noisy speech signal in the subspace domain to make the dictionary have perfect control mechanism for signal distortion and residual noise, which is possible to minimize the dist
3、ortion of the signal while eliminating the noise. The K singular value decomposition (K?SVD) algorithm is used for sparse representation and dictionary updating for the noisy speech by means of over?complete small dictionary. The correlation threshold and energy threshold are set in orthogonal match
4、ing pursuit (OMP) algorithm to adaptively control the reconstruction and iteration times, and reduce the reconstruction time. The experimental results show that, in comparison with the algorithms given in literatures, the new algorithm under different noise backgrounds has higher SNR and PESQ, and c
5、an reduce the speech distortion and improve the speech quality.Keywords: speech enhancement; small dictionary; subspace domain; K?SVD; OMP; threshold0 引 言语音增强1的目的就是尽可能地从噪声中提取出纯净语音信号。近年来,基于信号稀疏表示的语音增强算法受到广泛关注。稀疏表示2是指用尽可能少的非零系数来准确表示原始信号。由于使用冗余字典能很好地表示出在稀疏基上近似稀疏的语音信号,对于非稀疏的噪声不能进行表示,利用稀疏表示的这个特点能够有效去除信号中
6、的噪声。K?SVD3(K?Singular Value Decomposition)算法是最具代表性的一种稀疏表示算法。近年来,文献4提出一种基于频域上的小字典训练的语音增强算法,文献5提出一种基于Sparse K?SVD学习字典的语音增强方法,文献6提出一种基于自适应逼近残差的稀疏表示语音降噪方法。与这些基于频域的方法相比,信号子空间7可通过选取适当的拉格朗日乘子,在抑制噪声的同时减少信号失真。因此,本文把字典训练方法应用于子空间域。而小字典易于进行奇异值分解,更能够体现出语音的局部特性,所以本文提出一种基于子空间域的自适应小字典的语音增强算法。在子空间域中用带噪语音信号的特征值构造过完备的
7、小字典,然后将其作为初始字典,对带噪语音的特征值用K?SVD算法不断进行稀疏表示和字典更新。其中在OMP8 (Orthogonal Matching Pursuit)算法中设置相关性阈值与能量阈值9来自适应控制重构阶段及迭代次数。实验结果表明,本文算法与原来的小字典语音增强算法相比,语音增强效果更好,且减少了运行时间,证实了新算法的有效性。注:本文通讯作者为贾海蓉。Reference1 YOU H, MA ZHIXIAN, WEI L I, et al. A speech enhancement method based on multi?task Bayesian compressive s
8、ensing J. IEICE transactions on information & systems, 2017(3): 557?559.2 HSIEH C T, HUANG P Y, CHEN T W, et al. Speech enhancement based on sparse representation under color noisy environment C/ 2016 IEEE International Symposium on Intelligent Signal Processing and Communication Systems. Nusa Dua:
9、IEEE, 2016: 134?138.3 RUBINSTEIN R, PELEG T, ELAD M. Analysis K?SVD: a dictionary?learning algorithm for the analysis sparse model J. IEEE transactions on signal processing, 2013, 61(3): 661?677.4 李轶南,张雄伟,曾理,等.基于小字典训练的语音增强算法J.军事通信技术,2013,34(1):32?38.LI Yinan, ZHANG Xiongwei, ZENG Li, et al. Speech e
10、nhancement based on small dictionary training J. Journal of military communications technology, 2013, 34(1): 32?38.5 黄玲,李琳,王薇,等.基于Sparse K?SVD学习字典的语音增强方法J.厦门大学学报(自然版),2014,53(1):36?40.HUANG Ling, LI Lin, WANG Wei, et al. Speech enhancement based on sparse K?SVD dictionary learning J. Journal of Xiam
11、en University (natural science), 2014, 53(1): 36?40.6 周伟力,贺前华,王亚楼,等.基于自适应逼近残差的稀疏表示语音降噪方法J.电子与信息学报,2017,39(2):309?315.ZHOU Weili, HE Qianhua, WANG Yalou, et al. Adapted stopping residue error based sparse representation for speech denoising J. Journal of electronics & information technology, 2017, 39
12、(2): 309?315.7 DAI X Z, YU B, DAI X H. An improved signal subspace algorithm for speech enhancement C/ 2014 Conference on e?Business, e?Services and e?Society. Berlin: Springer, 2014: 104?114.8 YANG H, HAO D, SUN H, et al. Speech enhancement using orthogonal matching pursuit algorithm C/ 2014 IEEE I
13、nternational Conference on Orange Technologies. Xian: IEEE, 2014: 101?104.9 周伟栋,杨震,于云.改进的正交匹配追踪语音增强算法J.信号处理,2016,32(3):287?295.ZHOU Weidong, YANG Zhen, YU Yun. Speech enhancement by using modified orthogonal matching pursuit algorithm J. Journal of signal processing, 2016, 32(3): 287?295.10 华志胜,付丽华.
14、基于块分类和字典优化的K?SVD图像去噪研究J.计算机工程与应用,2017,53(16):187?192.HUA Zhisheng, FU Lihua. K?SVD image denoising based on noisy image blocks classification and dictionary optimization J. Computer engineering & applications, 2017, 53(16): 187?192.11 JOUNG J, SUN S. SCF: sparse channel?state?information feedback using Karhunen?Love transform C/ 2015 GLOBECOM Workshops. Austin: IEEE, 2015: 314?319.12 NAKAYAMA K, HIGASHI S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度商业秘密保护及保密合同2篇
- 2024年度学校校园快递服务中心运营合同2篇
- 2024年度电力设备购销与维护合同2篇
- 2024年度房屋买卖合同中的付款方式及时间2篇
- 2024年版叉车安全操作承诺合同版B版
- 进口房买卖合同范例
- 2024名义合伙人协议书:城市综合体项目合作框架协议3篇
- 2024实验5电子商务支付安全数据保护与隐私保护协议3篇
- 2024年度办公大楼室内空气质量检测与治理服务合同3篇
- 2024版养老院宿管员劳动合同范本及服务标准3篇
- 小学六年级数学100道题解分数方程
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 《静脉输液和输血法》PPT课件.ppt
- 《质量管理小组活动准则》2020版_20211228_111842
- 星巴克案例分析
- 工业区位和区位因素的变化(以首钢为例)
- 物业管理搞笑小品剧本 搞笑小品剧本:物业管理难啊
- 《木偶兵进行曲》教案
- 五四制青岛版一年级科学上册第四单元《水》全部教案
- GB∕T 39757-2021 建筑施工机械与设备 混凝土泵和泵车安全使用规程
- 组织架构图PPT模板
评论
0/150
提交评论