下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、湖南省永州市上宜中学高二数学文联考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 若集合M=y|y=2x, P=y|y=,则MP等于( )A y|y1 B y|y1C y|y0 D y|y0参考答案:C2. 等差数列项的和等于( ) A B C D参考答案:B 略3. 若是连续函数,则常数A.0 B.1 C. 2 D. -2参考答案:C略4. 已知定义在R上的奇函数f(x)满足f(x)=f(2x),且f(1)=2,则f(1)+f(2)+f(3)+fA1B0C2D2参考答案:C【考点】函数奇偶性的性质【分析】本题通过赋值法对
2、f(2x)=f(x)中的x进行赋值为2+x,可得f(x)=f(2+x),可得到函数f(x)的周期为4,根据奇函数的性质得到f(0)=0,再通过赋值法得到f(1),f(2),f(3),f(4)的值,即可求解【解答】解:f(2x)=f(x),f2(2+x)=f(2+x),即f(x)=f(2+x),即f(x)=f(2+x),f(x+4)=f(4+x),故函数f(x)的周期为4定义在R上的奇函数f(x)满足f(2x)f(x)=0,且f(1)=2,f(0)=0,f(1)=f(1)=2,f(2)=f(0)=0,f(3)=f(1)=2,f(4)=f(0)=0,f(1)+f(2)+f(3)+f+f(2)+f(
3、3)+f(4)+f+f(1)=0+(2)=2,故选:C5. 4567(n1)n等于( ) AA BA Cn!4! DA参考答案:D略6. 在(1x)5(1x)6的展开式中,含x3的项的系数是( ) A. 5 B. 5 C. 10 D. 10参考答案:C由通项公式可得在的展开式中,含的项的系数是,所以C选项是正确的.7. 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比4000大的偶数共有A. 144个 B. 120个 C. 96个 D. 72个参考答案:B8. 已知各项不为0的等差数列an满足a42a72+3a8=0,数列bn是等比数列,且b7=a7,则b2b8b11等于()A1B
4、2C4D8参考答案:D考点:等比数列的性质 专题:等差数列与等比数列分析:由已知方程结合等差数列的性质求解a7,再利用等比数列的性质求解答案解答:解:数列an是各项不为0的等差数列,由a42+3a8=0,得,解得:a7=2则b7=a7=2又数列bn是等比数列,则b2b8b11=故选:D点评:本题考查了等差数列和等比数列的性质,考查了学生的计算能力,是中档题9. 如图,在长方体ABCDA1B1C1D1中,AB=1,BC=,点M在棱CC1上,且MD1MA,则当MAD1的面积最小时,棱CC1的长为()A BC2D参考答案:A【考点】棱柱的结构特征【分析】如图所示,建立空间直角坐标系D(0,0,0),
5、设M(0,1,t),D1(0,0,z),(zt0,z0)由MD1MA,可得?=0,zt=代入=|AM|MD1|,利用基本不等式的性质即可得出【解答】解:如图所示,建立空间直角坐标系D(0,0,0),设M(0,1,t),D1(0,0,z),A(,0,0),(zt0,z0)=(0,1,zt),=(,1,t),MD1MA,?=1+t(zt)=0,即zt=|AM|MD1|=,当且仅当t=,z=时取等号故选:A10. 随机变量服从二项分布,且则等于A. B. C. 1 D. 0 参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 下列函数中:(1)(2)(3)(4)(5),其中最小值为
6、2的函数是 (填正确命题的序号)参考答案:(1)(3)【考点】基本不等式;函数的最值及其几何意义 【专题】转化思想;换元法;不等式【分析】由基本不等式求最值的“一正、二定、三相等”,逐个选项验证可得【解答】解:(1)2=2,当且仅当|x|=即x=1时取等号,故正确;(2)=+2,但当=时,x不存在,故错误;(3)22=2,当且仅当=即x=4时取等号,故正确;(4)的x正负不确定,当x为负数时,得不出最小值为2,故错误;(5),取等号的条件为sinx=即sinx=1,而当0 x时sinx取不到1,故错误故答案为:(1)(3)【点评】本题考查基本不等式求最值,“一正、二定、三相等”是解决问题的关键
7、,属基础题12. A,B,C,D四人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻),那么不同的排法有 种参考答案:1213. 如图是计算+的值的程序框图,其中在判断框中应填入的条件是:参考答案:i10【考点】程序框图 【专题】算法和程序框图【分析】模拟程序框图的运行过程,得出该题是当型循环结构,应先判断是否满足条件,再执行循环体,共执行了9次循环运算,从而得出结论【解答】解:模拟程序框图的运行过程,知赋值i=1,m=0,n=0判断满足条件,执行i=1+1=2,m=0+1=1,n=0+;判断满足条件,执行i=2+1=3,m=1+1=2,n=+;判断满足条件,执行i=3+1=4,m=2
8、+1=3,n=+;判断满足条件,执行i=4+1=5,m=3+1=4,n=+;判断满足条件,执行i=9+1=10,m=8+1=9,n=+;判断不满足条件,输出n=+,算法结束由此看出i=10时不满足1010所以判断框中的条件应是i10故答案为:i10【点评】本题考查了程序框图的应用问题,解题时应根据题意,模拟程序框图的运行过程,以便得出正确的结果,是基础题14. 若函数在R上单调递增,则实数a的取值范围是 。参考答案:略15. 图是甲,乙两名同学次综合测评成绩的茎叶图,则乙的成绩的中位数是 ,甲乙两人中成绩较为稳定的是 . 参考答案:87;甲。16. 设椭圆1(ab0)的右准线与x轴的交点为M,
9、以椭圆的长轴为直径作圆O,过点M引圆O的切线,切点为N,若OMN为等腰直角三角形,则椭圆的离心率为 参考答案: 略17. 已知函数有两个极值点,则实数a的取值范围是_参考答案:.,令函数有两个极值点,则在区间上有两个实数根,当时,则函数在区间单调递增,因此在区间上不可能有两个实数根,应舍去,当时,令,解得,令,解得,此时函数单调递增,令,解得,此时函数单调递减,当时,函数取得极大值,当近于与近于时,要使在区间有两个实数根,则,解得实数的取值范围是,故答案为.三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 已知数列an中,(1)求an;(2)若,求数列bn的
10、前5项的和S5参考答案:(1);(2)77(1),则数列是首项为2,公比为2的等比数列,(2),19. 已知复数.(1)若,求;(2)取什么值时,是纯虚数.参考答案:(1),解得,所以.(2),解得,所以.20. 设函数, (1)记为的导函数,若不等式在上有解,求实数的取值范围;(2)若,对任意的,不等式恒成立求(,)的值参考答案:21. 已知函数在处取得极值.(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程.参考答案:解:(1),依题意, ,即 解得 (3分) ,令,得 若,则 故在上是增函数; 若,则 故在上是减函数; 所以是极大值,是极小值。 (6分) (2)曲
11、线方程为,点不在曲线上。 设切点为,则 由知,切线方程为 (9分) 又点在切线上,有 化简得 ,解得 所以切点为,切线方程为 (12分)略22. 已知函数f(x)=lnx,g(x)=f(x)+ax23x,函数g(x)的图象在点(1,g(1)处的切线平行于x轴(1)求a的值;(2)求函数g(x)的极值参考答案:【考点】6D:利用导数研究函数的极值【分析】(1)求导数,利用函数g(x)=lnx+ax23x,在点(1,f(1)处的切线平行于x轴直线,求a的值;(2)利用导数的正负,求函数g(x)的极值【解答】解:(1)函数f(x)=lnx,g(x)=f(x)+ax23x,g(x)=lnx+ax23x,g(x)=+2ax3,函数g(x)在点(1,g(1)处的切线平行于x轴,r(1)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销管理措施
- 工作总结报告个人范文(10篇)
- 大型商场促销活动方案
- 年度科教工作计划合集五篇
- 电力公司年终工作总结
- 个人原因辞职申请书模板汇编7篇
- 家访教师的个人心得体会
- 全国安全生产月主题活动工作总结范文大全
- 《史记》读书笔记
- 英语教师实习总结怎么写
- 2024-2034年中国云南白药行业市场现状分析及竞争格局与投资发展研究报告
- 单位食堂供餐方案(2篇)
- 语文 职业模块口语交际教学设计示例(打商务电话)
- 数据安全事件的溯源与责任追究
- 2022课程方案试题
- 中国文化-古今长安(双语)智慧树知到期末考试答案章节答案2024年西安欧亚学院
- 苏教译林版五年级上学期英语第七单元Unit7《At weekends》测试卷(含答案解析)
- 丝氨酸蛋白酶在代谢性疾病中的作用
- 纪念与象征-空间中的实体艺术 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 河北钢铁集团沙河中关铁矿有限公司矿山地质环境保护与土地复垦方案
- 《交通事故应急预案》课件
评论
0/150
提交评论