版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题10 阅读理解 2021届中考数学压轴大题专项训练(原卷版)1在平面直角坐标系中,对于点和,给出如下定义:如果,那么称点为点的“伴随点”例如:点的“伴随点”为点;点的“伴随点”为点(1)直接写出点的“伴随点”的坐标(2)点在函数的图象上,若其“伴随点”的纵坐标为2,求函数的解析式(3)点在函数的图象上,且点关于轴对称,点的“伴随点”为若点在第一象限,且,求此时“伴随点”的横坐标(4)点在函数的图象上,若其“伴随点”的纵坐标的最大值为,直接写出实数的取值范围2阅读下列材料,然后解答问题:在进行二次根式的化筒与计算时我们有时会遇到如:,这样的式子,其实我们还可以将其进一步化简:;以上将分母中的
2、根号化去的过程,叫做分母有理化请参照以上方法化简:(1)(2)(3)3设是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为对于一个函数,如果它的自变量与函数值满足:当时,有,我们就称此函数是闭区间上的“闭函数”如函数,当时,;当时,即当时,有,所以说函数是闭区间上的“闭函数”(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;(2)若二次函数是闭区间上的“闭函数”,求的值;(3)若一次函数是闭区间上的“闭函数”,求此函数的表达式(可用含的代数式表示)4阅读理解,解答下列问题:在平面直角坐标系中,对于点若点的坐标为,则称点为点的“级牵挂点”,如点的“级牵挂点
3、”为,即(1)已知点的“级牵挂点”为求点的坐标,并求出点到轴的距离;(2)已知点的“级牵挂点”为,求点的坐标及所在象限;(3)如果点的“级牵挂点”在轴上,求点的坐标;(4)如果点的“级牵挂点”在第二象限,求的取值范围;在中,当取最大整数时,过点作轴于点,连接,将平移得到,其中、的对应点分别为、,连接,直接写出四边形的面积为_5定义:若两条抛物线在x轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x轴上经过的两个相同点称为“同交点”,已知抛物线y=x2+bx+c经过(2,0)、(4,0),且一条与它是“同交点抛物线”的抛物线y=ax2+ex+f经过点(3,3)(1)求b、c及a的
4、值;(2)已知抛物线y=x2+2x+3与抛物线yn=x2xn(n为正整数)抛物线y和抛物线yn是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由当直线y=x+m与抛物线y、yn,相交共有4个交点时,求m的取值范围若直线y=k(k0,当且仅当a=_时,a+有最小值,最小值为_;(2)应用:如图1,已知点P为双曲线y=(x0)上的任意一点,过点P作PAx轴,PB丄y轴,四边形OAPB的周长取得最小值时,求出点P的坐标以及周长最小值:如图2,已知点Q是双曲线y=(x0)上一点,且PQx轴, 连接OP、OQ,当线段OP取得最小值时,在平面内取一点C,使得以0、P、Q、C为顶点的四边形是平行四边形,求出点C的坐标12数学小组遇到这样一个问题:若,均不为零,求的值小明说:“考虑到要去掉绝对值符号,必须对字母,的正负作出讨论,又注意到,在问题中的平等性,可从一般角度考虑两个字母的取值情况解:当两个字母,中有2个正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人装修工程石材安装合同
- 个人专属高效劳务协议(2024优化版)
- 2025版无人机植保作业质量控制合同样本3篇
- 教育信息化与学生成长档案的建设研究
- 二零二五年度诚意金支付及旅游产品预购协议4篇
- 二零二五年度绿色食品生产设备按揭购买协议2篇
- 提升学生网路素养助力其终身学习与发展
- 2025版无子女离婚协议书:离婚后子女权益保障与家庭责任协议12篇
- 二零二五年度车库门故障诊断与快速修复服务协议3篇
- 二零二五年度洁具绿色生产认证合同范本共20套3篇
- 2025年山东省济南市第一中学高三下学期期末统一考试物理试题含解析
- 中学安全办2024-2025学年工作计划
- 网络安全保障服务方案(网络安全运维、重保服务)
- 2024年乡村振兴(产业、文化、生态)等实施战略知识考试题库与答案
- 现代科学技术概论智慧树知到期末考试答案章节答案2024年成都师范学院
- 软件模块化设计与开发标准与规范
- 2024年辽宁铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 无痛人工流产术课件
- 有机农业种植模式
- 劳务派遣招标文件
- 法医病理学课件
评论
0/150
提交评论