版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为( )ABCD2计算等于
2、( )ABCD3记的最大值和最小值分别为和若平面向量、,满足,则( )ABCD4设为虚数单位,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限5的展开式中,满足的的系数之和为( )ABCD6在的展开式中,含的项的系数是( )A74B121CD7已知不同直线、与不同平面、,且,则下列说法中正确的是( )A若,则B若,则C若,则D若,则8已知集合,ByN|yx1,xA,则AB( )A1,0,1,2,3B1,0,1,2C0,1,2Dx1x29点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )ABCD10已知双曲线C:=1(a0,b0)的
3、右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+111已知为实数集,则( )ABCD12已知角的终边经过点,则的值是A1或B或C1或D或二、填空题:本题共4小题,每小题5分,共20分。13如图,在等腰三角形中,已知,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_. 14的展开式中,x5的系数是_(用数字填写答案)15在中,已知,则A的值是_.16袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角
4、坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (1)求直线l的普通方程和圆C的直角坐标方程;(2)直线l与圆C交于A,B两点,点P(2,1),求|PA|PB|的值.18(12分)已知椭圆:()的离心率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,的斜率分别为,求的值.19(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.20(12分)在四边形中,;如图,将沿边折起,连结,使,求
5、证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.21(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程22(10分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【详解】由已知,得
6、,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.2A【解析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.3A【解析】设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得,则,建立平面直角坐标系,设,由,可得,即,化简得点的轨迹方程为,则
7、,则转化为圆上的点与点的距离,转化为圆上的点与点的距离,.故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.4A【解析】利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【详解】,对应的点的坐标为,位于第一象限.故选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.5B【解析】,有,三种情形,用中的系数乘以中的系数,然后相加可得【详解】当时,的展开式中的系数为当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为故选
8、:B【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键6D【解析】根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,7C【解析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系
9、相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.8A【解析】解出集合A和B即可求得两个集合的并集.【详解】集合xZ|2x31,0,1,2,3,ByN|yx1,xA2,1,0,1,2,AB2,1,0,1,2,3故选:A【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.9C【解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切
10、球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.10B【解析】以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.11C【解析】求出集合,由此能求出【详解】为实数
11、集,或,故选:【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题12B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【详解】根据题意,连接,
12、如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时, 取得最小值因而故答案为: 【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.14-189【解析】由二项式定理得,令r = 5得x5的系数是15【解析】根据正弦定理,由可得,由可得,将代入求解即得.【详解】,即,则,则.故答案为:【点睛】本题考查正弦定理和二倍角的正弦公式,是基础题.16【解析】基本事件总数n126,其中三种颜色的球都有包含的基本事件个数m72,由此能求出其中三种颜色的球都有的概率【详解】解:袋
13、中有2个红球,3个白球和4个黄球,从中任取4个球,基本事件总数n126,其中三种颜色的球都有,可能是2个红球,1个白球和1个黄球或1个红球,2个白球和1个黄球或1个红球,1个白球和2个黄球,所以包含的基本事件个数m72,其中三种颜色的球都有的概率是p故答案为:【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)直线的普通方程,圆的直角坐标方程:.(2)【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)将直线的参数方程代入圆的直角坐标方程,利用一元
14、二次方程根和系数关系式即可求解.【详解】(1)直线l的参数方程为(t为参数),转换为直角坐标方程为x+y30.圆C的极坐标方程为24cos3,转换为直角坐标方程为x2+y24x30.(2)把直线l的参数方程为(t为参数),代入圆的直角坐标方程x2+y24x30,得到,所以|PA|PB|t1t2|6.【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.18(1)(2)【解析】(1)根据抛物线的焦点求得椭圆的焦点,由此求得,结合椭圆离心率求得,进而求得,从而求得椭圆的标准方程,求得椭圆上顶点的坐标,
15、由此求得直线的方程.联立直线的方程和椭圆方程,求得两点的纵坐标,由此求得的面积.(2)求得两点的坐标,设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,由此求得的值,根据在椭圆上求得的值,由此求得的值.【详解】(1)因为抛物线的焦点坐标为,所以椭圆的右焦点的坐标为,所以,因为椭圆的离心率为,所以,解得,所以,故椭圆的标准方程为.其上顶点为,所以直线:,联立,消去整理得,解得,所以的面积.(2)由题知,设,.由题还可知,直线的斜率不为0,故可设:.由,消去,得,所以所以,又因为点在椭圆上,所以,所以.【点睛】本小题主要考查抛物线的焦点,椭圆的标准方程和几何性质、直线与椭圆,三角形的面积等基
16、础知识,考查推理论证能力、运算求解能力,化归与转化思想、数形结合思想、函数与方程思想.19(1)(2)【解析】(1)当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.20(1)证明见详解;(2)【解析】(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由
17、勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,平面平面平面.平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(含去)又为平面的一个法向量,二面角的大小为.【点睛
18、】本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.21(1)点M的轨迹C的方程为,轨迹C是以,为焦点,长轴长为4的椭圆(2)【解析】(1)设,根据可求得,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以,为焦点,长轴长为的椭圆;(2)设,与椭圆方程联立,利用求得;利用韦达定理表示出与,根据平行四边形和向量的坐标运算求得,消去后得到轨迹方程;根据求得的取值范围,进而得到最终结果.【详解】(1)设,则由知:点在圆上 点的轨迹的方程为:轨迹是以,为焦点,长轴长为的椭圆(2)设,由题意知的斜率存在设,代入得:则,解得:设,则四边形为平行四边形又 ,消去得: 顶点的轨迹方程为【点睛】本题考查圆锥曲线中的轨迹方程的求解问题,关键是能够利用已知中所给的等量关系建立起动点横纵坐标满足的关系式,进而通过化简整理得到结果;易错点是求得轨迹方程后,忽略的取值范围.22(1)答案不唯一,具体见解析(2)证明见解析【解析】(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业污水回收处理合同3篇
- 文艺演出国际演出合同3篇
- 搅拌站转让合同范本3篇
- 摩托车货物运输合同3篇
- 安徽铁路行业劳动合同样本3篇
- 房屋买卖建筑项目监理合同3篇
- 政府采购合同性质的演变与发展3篇
- 提前解除劳动合同赔偿3篇
- 政府机关电脑销售协议3篇
- 政务信息化建设项目公告3篇
- 《“歪脑袋”木头桩》阅读测试
- 有关原始股权买卖协议书通用(7篇)
- 新旧公司法对照表
- 2023年邢台市眼科医院医护人员招聘笔试模拟试题及答案解析
- 三级医院医疗设备配置标准
- 项目主要技术方案计划表
- 【真题】北京市西城区六年级语文第一学期期末试卷 2021-2022学年(有答案)
- 压铸件气孔通用标准
- 安捷伦气质联用仪(Agilent-GCMS)培训教材
- 2022年FURUNO电子海图完整题库
- 加固工程竣工验收资料(质量验收表全套)
评论
0/150
提交评论