![2022届黑龙江省牡丹江第一高中高考数学五模试卷含解析_第1页](http://file4.renrendoc.com/view/c21fd6e111c507337ff2ce0de42a5c98/c21fd6e111c507337ff2ce0de42a5c981.gif)
![2022届黑龙江省牡丹江第一高中高考数学五模试卷含解析_第2页](http://file4.renrendoc.com/view/c21fd6e111c507337ff2ce0de42a5c98/c21fd6e111c507337ff2ce0de42a5c982.gif)
![2022届黑龙江省牡丹江第一高中高考数学五模试卷含解析_第3页](http://file4.renrendoc.com/view/c21fd6e111c507337ff2ce0de42a5c98/c21fd6e111c507337ff2ce0de42a5c983.gif)
![2022届黑龙江省牡丹江第一高中高考数学五模试卷含解析_第4页](http://file4.renrendoc.com/view/c21fd6e111c507337ff2ce0de42a5c98/c21fd6e111c507337ff2ce0de42a5c984.gif)
![2022届黑龙江省牡丹江第一高中高考数学五模试卷含解析_第5页](http://file4.renrendoc.com/view/c21fd6e111c507337ff2ce0de42a5c98/c21fd6e111c507337ff2ce0de42a5c985.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数f(x),若关于x的方程f(x)kx恰有4个不相等的实数根,则实数k的取值范围是()A
2、 B C D 2函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为( )ABC2D3已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,则,的大小关系(用不等号连接)为( )ABCD4以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B4月份仅有三个城市居民消费价格指数超过102C四个
3、月的数据显示北京市的居民消费价格指数增长幅度波动较小D仅有天津市从年初开始居民消费价格指数的增长呈上升趋势5数列an,满足对任意的nN+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列an的前100项的和S100=( )A132B299C68D996已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD7已知定点,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是( )A椭圆B双曲线C抛物线D圆8在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示将弯管形状近似地看成是圆弧,已知弯管向外
4、的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是( )ABCD9函数的图像大致为( ).ABCD 10点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为( ) ABCD11已知圆与抛物线的准线相切,则的值为()A1B2CD412( )ABC1D二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和公式为,则数列的通项公式为_14的二项展开式中,含项的系数为_15已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为_.16已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,
5、则双曲线的离心率的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值18(12分)已知数列中,a1=1,其前n项和为,且满足(1)求数列的通项公式;(2)记,若数列为递增数列,求的取值范围19(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).20(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.21(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设
6、关于轴的对称点为,证明:直线过轴上的定点.22(10分)已知f(x)=|x +3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a +2b +3c=m,求证:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由已知可将问题转化为:yf(x)的图象和直线ykx有4个交点,作出图象,由图可得:点(1,0)必须在直线ykx的下方,即可求得:k;再求得直线ykx和yln x相切时,k;结合图象即可得解.【详解】若关于x的方程f(x)kx恰有4个不相等的实数根,则yf(x)的图象和直线ykx有4个交点作出函数y
7、f(x)的图象,如图,故点(1,0)在直线ykx的下方k10,解得k.当直线ykx和yln x相切时,设切点横坐标为m,则k,m.此时,k,f(x)的图象和直线ykx有3个交点,不满足条件,故所求k的取值范围是,故选D.【点睛】本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题2C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上
8、单调递减可得时,取得最大值,求解可得实数的值.3A【解析】因为,所以,即周期为,因为为奇函数,所以可作一个周期-2e,2e示意图,如图在(,)单调递增,因为,因此,选点睛:函数对称性代数表示(1)函数为奇函数 ,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则4D【解析】采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居
9、民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.5B【解析】由为定值,可得,则是以3为周期的数列,求出,即求.【详解】对任意的,均有为定值,故,是以3为周期的数列,故,.故选:.【点睛】本题考查周期数列求和,属于中档题.6B【解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B7B【解析】根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当
10、在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.8B【解析】为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.9A【解析】本题采用排
11、除法: 由排除选项D;根据特殊值排除选项C;由,且无限接近于0时, 排除选项B;【详解】对于选项D:由题意可得, 令函数 ,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.10D【解析】由题意得,再利用基本不等式即可求解【详解】将平方得,(当且仅当时等号成立),的最小值为,故选:D【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题11B【解析】因为圆与抛物线的准线相
12、切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!12A【解析】利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果.【详解】,因此,.故选:A.【点睛】本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式【详解】由题意,可知当时,;当时,. 又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解
13、答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题14【解析】写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.15【解析】求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为, 的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题
14、.16【解析】法一:根据直角三角形的性质和勾股定理得,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,设,则,令,所以时,在上单调递增, ,.法二:,令,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解
15、析;(2)【解析】(1)取BC的中点O,则,由是等边三角形,得,从而得到平面,由此能证明(2)以,所在直线分别为x,y,z轴建立空间直角坐标系,利用向量法求得二面角的余弦值,得到结果.【详解】(1)取BC的中点O,连接,由于与是等边三角形,所以有,且,所以平面,平面,所以(2)设,是全等的等边三角形,所以,又,由余弦定理可得,在中,有,所以以,所在直线分别为x,y,z轴建立空间直角坐标系,如图所示,则,设平面的一个法向量为,则,令,则,又平面的一个法向量为,所以二面角的余弦值为,即二面角的余弦值为【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利用线面垂直证明线性垂直,利用向量法求二面
16、角的余弦值,属于中档题目.18(1)(2)【解析】(1)项和转换可得,继而得到,可得解;(2)代入可得,由数列为递增数列可得,令,可证明为递增数列,即,即得解【详解】(1),即,(2)=2-(2n+1)数列为递增数列,即令,即为递增数列,即的取值范围为【点睛】本题考查了数列综合问题,考查了项和转换,数列的单调性,最值等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.19(1)1;(2)见解析【解析】(1)分别求得与的导函数,由导函数与单调性关系即可求得的值;(2)由(1)可知当时,当时,因而,构造,由对数运算及不等式放缩可证明,从而不等式可证明.【详解】(1)函数在上单调递减
17、,即在上恒成立,又函数在上单调递增,即在上恒成立,综上可知,.(2)证明:由(1)知,当时,函数在上为减函数,在上为增函数,而,当时,当时,.即,.【点睛】本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题.20(1)(2)证明见解析【解析】(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),因为,所以要证,只需证,即证,因为,所以只要证,即证,即证,因为,所以只需证,因为,所以成立,所以.【点睛】本小题主要考查绝对值不
18、等式的解法,考查分析法证明不等式,考查基本不等式的运用,属于中档题.21(1)或;(2)见解析【解析】(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.【详解】(1)由条件可知直线的斜率存在,则可设直线的方程为,则,由,有,所以,由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,故所求直线方程为或.(也可联立直线与椭圆方程,由验证)(2)设,则,直线的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国洁亮液行业投资前景及策略咨询研究报告
- 2025至2031年中国外墙外保温专用网格布行业投资前景及策略咨询研究报告
- 2025至2030年中国瓷质仿古砖数据监测研究报告
- 2025至2030年中国平面滚针轴承数据监测研究报告
- 2025至2030年中国人工智能温度控制器/调节器数据监测研究报告
- 2025年中国程控交换机用户接口电路市场调查研究报告
- 2025年中国特种防粘剂市场调查研究报告
- 2025至2030年中国连锁端子用压着工具数据监测研究报告
- 2025年度新能源储能项目落户保障合同
- 厨具设备购销合同(31篇)
- 华为公司的内部审计制度
- 肿瘤医院病历书写培训课件
- 《蓄电池培训》课件
- 32软件测试报告GJB438C模板
- 合同移交登记表
- C++面向对象的程序设计课件
- 幼儿园大班数学PPT课件2、3、4的分解与组成
- 典籍里的中国
- 遥感图像的分析解译(共34张PPT)
- 中国专业学位文字案例评审标准框架
- 六年级心理健康导学案-10真正的朋友 |大象版
评论
0/150
提交评论