版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )A3BC4D2将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为( )ABCD3已知等差数列中,则数列的前10项和( )A100B210C380D4004阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内
3、切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )ABCD5已知函数是定义在上的偶函数,且在上单调递增,则( )ABCD6九章算术是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )ABCD7已知函数有两个不同的极值点,若不等式有解,则的取值范围是( )ABCD8设,则( )ABCD9已知函数()的最小值为0,则( )ABCD10已知全集,则集
4、合的子集个数为( )ABCD11已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是( )ABC2D312圆心为且和轴相切的圆的方程是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是_.14直线过圆的圆心,则的最小值是_.15一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没
5、有回到最初的造谣者的概率是_16已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则_;四棱锥P-ABCD的体积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.18(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数1020402010以样本中100盏灯的平均亮灯时长
6、作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.求的数学期望和方差;若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;若,则,.19(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;()为了了解居民的用电情
7、况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;()在满足()的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.20(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,均为正实数,且满足.证明:.21(12分)已知函数(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间22(10分)在中,内角的对边分别是,已知(1)求的值;(2)若,求的面积参考答案一、选择题:本题共12
8、小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.2B【解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本
9、小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.3B【解析】设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.4D【解析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查
10、运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.5C【解析】根据题意,由函数的奇偶性可得,又由,结合函数的单调性分析可得答案【详解】根据题意,函数是定义在上的偶函数,则,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题6C【解析】利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.【点睛】本题主要考查
11、了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.7C【解析】先求导得(),由于函数有两个不同的极值点,转化为方程有两个不相等的正实数根,根据,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还
12、考查分析和计算能力,有一定的难度.8D【解析】由不等式的性质及换底公式即可得解.【详解】解:因为,则,且,所以,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.9C【解析】设,计算可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作出函数的大致图像, 结合图像,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.10C【解析】先求B.再求,求得则子集个数可求【详解】由题=, 则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是
13、基础题11A【解析】由点到直线距离公式建立的等式,变形后可求得离心率【详解】由题意,一条渐近线方程为,即,即,故选:A【点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础12A【解析】求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】取中点,连结,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围【详解】取中点,连结,在棱长为2的正方体中,点、分别是
14、棱、的中点,平面平面,是侧面正方形内一点(含边界),平面,点在线段上运动,在等腰中,作于,由等面积法解得:,线段长度的取值范围是,故答案为:,【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题14【解析】直线mxny10(m0,n0)经过圆x2+y22x+2y10的圆心(1,1),可得m+n1,再利用“乘1法”和基本不等式的性质即可得出.【详解】mxny10(m0,n0)经过圆x2+y22x+2y10的圆心(1,1),m+n10,即m+n1.()(m+n)22+24,当且仅当mn时取等号.则的最小值是4.故答案为:4.【点睛】本
15、题考查了圆的标准方程、“乘1法”和基本不等式的性质,属于基础题.15【解析】利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.1690 【解析】易得平面PAD,P点在与BA垂直的圆面内运动,显然,PA是圆的直径时,PA最长;将四棱锥补形为长方体,易得为球的直径即可得到PD,从而求得四棱锥的体积.【详解】如图,由及,得平面PAD,即P点在与BA垂直的圆面内运动,
16、易知,当P、A三点共线时,PA达到最长,此时,PA是圆的直径,则;又,所以平面ABCD,此时可将四棱锥补形为长方体,其体对角线为,底面边长为2的正方形,易求出,高,故四棱锥体积.故答案为: (1) 90 ; (2) .【点睛】本题四棱锥外接球有关的问题,考查学生空间想象与逻辑推理能力,是一道有难度的压轴填空题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) 的极小值为,无极大值.(2)见解析.【解析】(1)对求导,确定函数单调性,得到函数极值.(2)构造函数,证明恒成立,得到,得证.【详解】(1)由题意知, 令,得,令,得.则在上单调递减,在上单调递增,所以的极小值
17、为,无极大值.(2)当时,要证,即证.令,则,令,得,令,得,则在上单调递减,在上单调递增,所以当时,所以,即.因为时,所以当时,所以当时,不等式成立.【点睛】本题考查了函数的单调性,极值,不等式的证明,构造函数是解题的关键.18(1)(2),,72【解析】(1)将每组数据的组中值乘以对应的频率,然后再将结果相加即可得到亮灯时长的平均数,将此平均数除以(个小时),即可得到的估计值;(2)利用二项分布的均值与方差的计算公式进行求解;先根据条件计算出的取值范围,然后根据并结合正态分布概率的对称性,求解出在满足取值范围下对应的概率.【详解】(1)平均时间为(分钟)(2),即最佳时间长度为72分钟.【
18、点睛】本题考查根据频数分布表求解平均数、几何概型(长度模型)、二项分布的均值与方差、正态分布的概率计算,属于综合性问题,难度一般.(1)如果,则;(2)计算正态分布中的概率,一定要活用正态分布图象的对称性对应概率的对称性.19(1);(2),;(3)见解析.【解析】试题分析: (1)根据题意分段表示出函数解析式;(2)将代入(1)中函数解析式可得,即,根据频率分布直方图可分别得到关于的方程,即可得;(3)取每段中点值作为代表的用电量,分别算出对应的费用值,对应得出每组电费的概率,即可得到的概率分布列,然后求出的期望.试题解析:(1)当时,;当当时,;当当时,所以与之间的函数解析式为.(2)由(1)可知,当时,则,结合频率分布直方图可知,(3)由题意可知可取50,150,250,350,450,550,当时,当时,当时,当时,当时,当时,故的概率分布列为25751402203104100.10.20.30.20.150.05所以随机变量的数学期望20(1);(2)见解析【解析】(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【详解】(1),的最大值为4.关于的不等式有解等价于,()当时,上述不等式转化为,解得,()当时,上述不等式转化为,解得,综上所述,实数的取值范围为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省吕梁市临县城区2023-2024学年六年级上学期期中英语试卷
- 陕西省咸阳市彬州市2024-2025学年九年级上学期期中考检测化学试卷(含答案)
- 食品经营户食品安全培训
- 手术衣产业深度调研及未来发展现状趋势
- 喷色机皮革工业用产业运行及前景预测报告
- 去死皮剪产业深度调研及未来发展现状趋势
- 女靴产业规划专项研究报告
- 绿色数据中心UPS设计方案
- 凸版印刷机产业规划专项研究报告
- 2025年全国青少年禁毒知识竞赛题库附答案
- 重庆市2023-2024学年一年级上学期期中练习语文试题
- 银行副行长转正申请工作总结
- 人教版七年级下册数学第八章二元一次方程组应用题-方案问题
- 98S205 消防增压稳压设备选用与安装(隔膜式气压罐)
- 改善人因绩效
- 炉头设备安全操作规定
- 托管安全责任承诺书范文(19篇)
- 隧道岩溶处治关键技术
- -常规化验单解读
- 关于生活中物理的课件
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题集锦带答案
评论
0/150
提交评论