2021-2022学年江西省顶级名校高考数学五模试卷含解析_第1页
2021-2022学年江西省顶级名校高考数学五模试卷含解析_第2页
2021-2022学年江西省顶级名校高考数学五模试卷含解析_第3页
2021-2022学年江西省顶级名校高考数学五模试卷含解析_第4页
2021-2022学年江西省顶级名校高考数学五模试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若x(0,1),alnx,b,celnx,则a,b,c的大小关系为()AbcaBcbaCabcDbac2如图,在正

2、方体中,已知、分别是线段上的点,且.则下列直线与平面平行的是( )ABCD3小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:0012:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( )ABCD4一艘海轮从A处出发,以每小时24海里的速度沿南偏东40的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是( )A6 海里B6海里C8海里D8海里5某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是

3、18人,则该班的学生人数是( )A45B50C55D606如图,内接于圆,是圆的直径,则三棱锥体积的最大值为( )ABCD7设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D8已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为( )ABC 或 D 或 9设f(x)是定义在R上的偶函数,且在(0,+)单调递减,则( )ABCD10某几何体的三视图如图所示,则该几何体的体积是( )ABCD11若复数满足,则的虚部为( )A5BCD-512已知函数有两个不同的极值点,若不等式有解,

4、则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在区间内任意取一个数,则恰好为非负数的概率是_.14如图,在三棱锥中,平面,已知,则当最大时,三棱锥的体积为_15已知,则满足的的取值范围为_16设、为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:若mn,则m;若m,n,m,n,则;若,m,n,则mn;若,m,n,mn,则n;其中正确命题的序号为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、(),求证:.18(12分)在中,内角的对边分

5、别是,已知(1)求的值;(2)若,求的面积19(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,求的取值范围.20(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.21(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.22(10分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某

6、生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只

7、有一项是符合题目要求的。1A【解析】利用指数函数、对数函数的单调性直接求解【详解】x(0,1),alnx0,b()lnx()01,0celnxe01,a,b,c的大小关系为bca故选:A【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题2B【解析】连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【点睛】本题主要考查了线面平行的判定

8、,考查了推理论证能力和空间想象能力,属于中档题3C【解析】设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.4A【解析】先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:BAC704030.ACD1

9、10,ACB1106545,ABC1803045105.又AB240.512.在ABC中,由正弦定理得,即,.故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.5D【解析】根据频率分布直方图中频率小矩形的高组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)200.30,样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题6B【解析】根据已知证明平面,只要设,

10、则,从而可得体积,利用基本不等式可得最大值【详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B【点睛】本题考查求棱锥体积的最大值解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值7A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【点睛】本题为圆锥曲线离心率的求解,难

11、度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来8D【解析】由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,2aq2=aq+a,2q2=q+1,q=1或q= 故选:D【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练9D【解析】利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,而,因为在上递减,即故选:D【点睛】本小题主要考查利用函数的奇偶

12、性和单调性比较大小,属于基础题.10A【解析】观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。11C【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题12C【解析】先求导得(),由于函数有两个不同的极值点,转化为方程有两个不相等的正实数根,根据,求出的取值范围,而有解,通

13、过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.【详解】当是非负数时,区间长度是,又因为对应的区间长度是,所以“

14、恰好为非负数”的概率是.故答案为:.【点睛】本题考查几何概型中的长度模型,难度较易.解答问题的关键是能判断出目标事件对应的区间长度.144【解析】设,则,当且仅当,即时,等号成立.,故答案为415【解析】将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【详解】根据题意,f(x)x|x|,则f(x)为奇函数且在R上为增函数,则f(2x1)+f(x)0f(2x1)f(x)f(2x1)f(x)2x1x,解可得x,即x的取值范围为,+);故答案为:,+)【点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇偶性与单调性1

15、6【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于,当mn时,由直线与平面平行的定义和判定定理,不能得出m,错误;对于,当m,n,且m,n时,由两平面平行的判定定理,不能得出,错误;对于,当,且m,n时,由两平面平行的性质定理,不能得出mn,错误;对于,当,且m,n,mn时,由两平面垂直的性质定理,能够得出n,正确;综上知,正确命题的序号是故答案为:【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)当时, 在单调递增,当时,单调递增区间为,单调递减区

16、间为(2)证明见解析【解析】(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【详解】(1),当时,恒成立,则在单调递增当时,令得,解得,又,当时,单调递增;当时,单调递减;当时,单调递增.(2)依题意得,则由(1)得,在单调递增,在上单调递减,在上单调递增若方程有三个实数解,则法一:双偏移法设,则在上单调递增,即,其中,在上单调递减,即设,在上单调递增,即,其中,在上单调递增,即.法二:直接证明法,在上单调递增,要证,即证设,则在上单调递减,在上单调递增,即(注意:若没有

17、证明,扣3分)关于的证明:(1)且时,(需要证明),其中(2),即,则【点睛】本题考查函数与倒导数的综合应用,难度较难.(1)对于含参函数单调性的分析,可通过分析参数的临界值,由此分类讨论函数单调性;(2)利用导数证明不等式常用方法:构造函数,利用新函数的单调性确定函数的最值,从而达到证明不等式的目的.18(1);(2).【解析】(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,, 利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得. , , .(2),由正弦定理,可得. ab,, . .【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.

18、对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19(1)答案不唯一,具体见解析(2)【解析】(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【详解】解:(1)因为, 所以,当时,在上单调递减.当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,令

19、,得.设,则.当时,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,符合题意.当时,所以有唯一实根,当时,在上单调递增,不符合题意.综上,即的取值范围为.【点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.20(1);(2)见解析【解析】(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,可得,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,即可得证;法二:设,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦

20、达定理,分别求出,化简,即可得证.【详解】(1)抛物线C的焦点坐标为,且该点在直线上,所以,解得,故所求抛物线C的方程为(2)法一:由点F在线段上,可设直线,的方程分别为和且,则,.直线的方程为,即.又点在线段上,.P是的中点,.由于,不重合,所以法二:设,则当直线的斜率为0时,不符合题意,故可设直线的方程为联立直线和抛物线的方程,得又,为该方程两根,所以,.,由于,不重合,所以【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题21(1)个;(1)存在,.【解析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求导得到最值,得到满足条件的的范围试题解析:(1)设,1分令,得递增;令,得递减,1分,即,3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为15分(或由方程在上有两根可得)(1)假设存在实数,使得对恒成立,则,对恒成立,即,对恒成立 ,6分设,令,得递增;令,得递减,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论