版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知(),i为虚数单位,则( )AB3C1D52若,则“”是 “”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件3如图是来自古希腊数学家希波克拉底所研究的
2、几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则( )ABCD4直三棱柱中,则直线与所成的角的余弦值为( )ABCD5已知集合A,则集合( )ABCD6已知函数是定义域为的偶函数,且满足,当时,则函数在区间上零点的个数为( )A9B10C18D207已知集合,则集合( )ABCD8已知幂函数的图象过点,且,则,的大小关系为( )ABCD9已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( )ABCD10函数在上的大致图象是( )ABCD11设,点,设对一切都有不等式 成立,则正整数的最小值为(
3、 )ABCD12将函数向左平移个单位,得到的图象,则满足( )A图象关于点对称,在区间上为增函数B函数最大值为2,图象关于点对称C图象关于直线对称,在上的最小值为1D最小正周期为,在有两个根二、填空题:本题共4小题,每小题5分,共20分。13如图,已知扇形的半径为1,面积为,则_.14设函数,若对于任意的,2,不等式恒成立,则实数a的取值范围是 15记Sk1k+2k+3k+nk,当k1,2,3,时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推测,AB_16展开式的第5项的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
4、7(12分)如图,在正三棱柱中,分别为,的中点(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值18(12分)已知函数()当时,讨论函数的单调区间;()若对任意的和恒成立,求实数的取值范围19(12分)如图,在四棱柱中,底面是正方形,平面平面,.过顶点,的平面与棱,分别交于,两点.()求证:;()求证:四边形是平行四边形;()若,试判断二面角的大小能否为?说明理由.20(12分)如图,平面四边形中,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.21(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中
5、点.(1)证明:平面(2)若,求二面角的余弦值.22(10分)在中,、的对应边分别为、,已知,.(1)求;(2)设为中点,求的长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.2A【解析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,则当时,有,解得,充分性成立;当
6、时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.3D【解析】由半圆面积之比,可求出两个直角边 的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出.【详解】解:由题意知 ,以 为直径的半圆面积,以 为直径的半圆面积,则,即.由 ,得 ,所以.故选:D.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值.4A【解析】设,延长至,使得,连,可证,得到(或补角)为所求
7、的角,分别求出,解即可.【详解】设,延长至,使得,连,在直三棱柱中,四边形为平行四边形,(或补角)为直线与所成的角,在中,在中,在中,在中,在中,.故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.5A【解析】化简集合,,按交集定义,即可求解.【详解】集合,则.故选:A.【点睛】本题考查集合间的运算,属于基础题.6B【解析】由已知可得函数f(x)的周期与对称轴,函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,作出函数f(x)与g(x)的图象如图,数形结合即可得到答案.【详解】函数F(x)f(x)在
8、区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,由f(x)f (2x),得函数f(x)图象关于x1对称,f(x)为偶函数,取xx+2,可得f(x+2)f(x)f(x),得函数周期为2.又当x0,1时,f(x)x,且f(x)为偶函数,当x1,0时,f(x)x,g(x),作出函数f(x)与g(x)的图象如图:由图可知,两函数图象共10个交点,即函数F(x)f(x)在区间上零点的个数为10.故选:B.【点睛】本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.7D【解析】弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,
9、所以,故,又, ,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.8A【解析】根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.9D【解析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.10D【解析】讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判
10、断.【详解】当时,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,故切线的斜率变小,当时,故切线的斜率变大,可排除A、B;当时,则,所以函数在上单调递增,令 ,当时,故切线的斜率变大,当时,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.11A【解析】先求得,再求得左边的范围,只需,利用单调性解得t的范围.【详解】由题意知sin,随n的增大而增大,,,即,又f(t)=在t上单增,f(2)= -10,正整数的最小值为3.【点睛】本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化
11、思想,属于中档题.12C【解析】由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.二、填空题:本题
12、共4小题,每小题5分,共20分。13【解析】根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公式求出.【详解】设角, 则,所以在等腰三角形中,则.故答案为:.【点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.14【解析】试题分析:由题意得函数在2,上单调递增,当时在2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性15【解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,A,A1,解得B
13、,所以AB故答案为:【点睛】本题考查了归纳推理,意在考查学生的推理能力.1670【解析】根据二项式定理的通项公式,可得结果.【详解】由题可知:第5项为故第5项的的系数为故答案为:70.【点睛】本题考查的是二项式定理,属基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见详解;(2).【解析】(1)取中点为,通过证明/,进而证明线面平行;(2)取中点为,以为坐标原点建立直角坐标系,求得两个平面的法向量,用向量法解得二面角的大小.【详解】(1)证明:取的中点,连结,如下图所示:在中,因为 为的中点,且,又为的中点,且,且,四边形为平行四边形,又平面,平面,平面,即
14、证.(2)取中点,连结,则,平面,以为原点,分别以,为,轴,建立空间直角坐标系,如下图所示:则,设平面的一个法向量,则,则,令则,同理得平面的一个法向量为,则,故平面与平面所成二面角(锐角)的余弦值为.【点睛】本题考查由线线平行推证线面平行,以及利用向量法求解二面角的大小,属综合中档题.18 ()见解析()【解析】()首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可; ()将原问题进行等价转化为,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可【详解】解:()当时,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:当时,函数的单调递减区间是,无单调递增区间:当时
15、,函数的单调递减区间是,函数的单调递增区间是()对任意的和,恒成立等价于:,恒成立即,恒成立令:,则得,由此可得:在区间上单调递减,在区间上单调递增,当时,即又,实数的取值范围是:【点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题19(1)证明见解析;(2)证明见解析;(3)不能为.【解析】(1)由平面平面,可得平面,从而证明;(2)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(3)作交于点,延长交于点,连接,根据三垂线定理,确定二面角的平面角,若,由大角对大边知,两者矛盾,故二面角的大小不能为.【详解】
16、(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,由,所以平面,则平面,又,根据三垂线定理,得到,所以是二面角的平面角,若,则是等腰直角三角形,又,所以中,由大角对大边知,所以,这与上面相矛盾,所以二面角的大小不能为.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系
17、的相互转化,属中档题.20(1)见解析;(2)【解析】(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2)解法一:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,以为坐标原点,方向为轴方向,建立如图所示的空间直角坐标系,则,设平面的法向量,由得取,则
18、设直线与平面所成角大小为,则,故直线与平面所成角的正弦值为. 解法二:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,过作于,连,则由平面平面,所以,又,则平面,又平面所以,在中,所以,设到平面的距离为,由,即,即,可得,设直线与平面所成角大小为,则.故直线与平面所成角的正弦值为.【点睛】此题考查的是立体几何中的证明面面垂直和求线面角,考查学生的转化思想和计算能力,属于中档题.21(1)详见解析;(2).【解析】(1)连接,由菱形的性质以及中位线,得,由平面平面,且交线,得平面,故而,最后由线面垂直的判定得结论.(2)以为原点建平面直角坐标系,求出平面平与平面的法向量,最后求得二面角的余弦值为.【详解】解:(1)连结 ,且是的中点,平面平面,平面平面,平面. 平面,又为菱形,且为棱的中点,.又,平面平面.(2)由题意有,四边形为菱形,且 分别以,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则设平面的法向量为由,得,令,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光电子器件的防伪技术考核试卷
- 2006年江苏盐城中考满分作文《鞋带•电视•短信》
- 2006年湖北荆门中考满分作文《那一声声的心跳哟》
- 图书批发市场的季节性分析考核试卷
- 保险公估在职业责任保险的专业解读考核试卷
- 26 西门豹治邺(说课稿)2024-2025学年-统编版语文四年级上册
- 农业科普教育与推广实践考核试卷
- 2025年浙教版九年级生物上册月考试卷含答案
- 2025年人教版五年级英语上册月考试卷含答案
- 专项培训服务协议模板(2024版)
- 2025年山东水发集团限公司社会招聘高频重点提升(共500题)附带答案详解
- JJG 1204-2025电子计价秤检定规程(试行)
- 2024年计算机二级WPS考试题库(共380题含答案)
- 《湖南省房屋建筑和市政工程消防质量控制技术标准》
- 中建集团面试自我介绍
- 《工业园区节水管理规范》
- 警校生职业生涯规划
- 意识障碍患者的护理诊断及措施
- 2025企业年会盛典
- 215kWh工商业液冷储能电池一体柜用户手册
- 场地平整施工组织设计-(3)模板
评论
0/150
提交评论