




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在中, ,是上的一点,若,则实数的值为( )ABCD2已知集合,则集合的真子集的个数是( )A8B7C4D33已知数列为等差数列,且,则的值为( )ABCD4已知等差数列的公差
2、为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D255函数的部分图象如图所示,则的单调递增区间为( )ABCD6某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD7已知F为抛物线y24x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则|FA|FB|的值等于()AB8CD48以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A3月份四个
3、城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B4月份仅有三个城市居民消费价格指数超过102C四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D仅有天津市从年初开始居民消费价格指数的增长呈上升趋势9在中,点D是线段BC上任意一点,则( )AB-2CD210设(是虚数单位),则( )AB1C2D11定义在上的函数与其导函数的图象如图所示,设为坐标原点,、四点的横坐标依次为、,则函数的单调递减区间是( )ABCD12已知函数的图象如图所示,则可以为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n
4、个整数,则当n最小时实数a的值为_14已知是第二象限角,且,则_.15若,则的展开式中含的项的系数为_.16为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害. (1)_;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过_分钟人方可进入房间.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,其中(1)当时,设函数,求函数的极值(2)若函数在区间上递增,求的取值范围;(3)证明:18(12分)已知ABC的内角A,B,C的对边分别为a,b,c
5、,若c2a,bsinBasinAasinC()求sinB的值;()求sin(2B+)的值19(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健
6、康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,的大小关系.20(12分)已知
7、是递增的等差数列,是方程的根.(1)求的通项公式;(2)求数列的前项和.21(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.22(10分)已知中,角,的对边分别为,已知向量,且(1)求角的大小;(2)若的面积为,求参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】变形为,由得,转化在中,利用三点共线可得.【详解】解:依题: ,又三点共线,解得故选:【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的
8、形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程: 三点共线 (为平面内任一点,)2D【解析】转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.3B【解析】由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得【详解】解:由等差数列的性质可得,解得,故选:B【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题4D【解析】由公差d=-2可知数列单调递减,再由余弦定理结合通项
9、可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.5D【解析】由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:【点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解
10、析式,属于中档题.6D【解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.7C【解析】将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值【详解】F(1,0),故直线AB的方程为yx1,联立方程组,可得x26x+10,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x26,x1x21由抛物线的定义可知:|FA|x1+1,|FB|x2+
11、1,|FA|FB|x1x2|故选C【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题8D【解析】采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.9A【解析】设,用表示出,求出的值即可得出答案.【详解】设由,.故选:A【点睛】本题考查了向量加法、减法以及数乘运
12、算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.10A【解析】先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【详解】,故选:A【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题11B【解析】先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交
13、点,合乎题意.对函数求导得,由得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.12A【解析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.故选:A【点睛】本题主要考查图象
14、的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题二、填空题:本题共4小题,每小题5分,共20分。13-1【解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+),整数解有
15、无穷多,故a0不符合条件;综上所述,a1故答案为:1【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.14【解析】由是第二象限角,且,可得,由及两角和的正切公式可得的值.【详解】解:由是第二象限角,且,可得,由,可得,代入,可得,故答案为:.【点睛】本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.15【解析】首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.
16、162 40 【解析】(1)由时,即可得出的值;(2)解不等式组,即可得出答案.【详解】(1)由图可知,当时,即(2)由题意可得,解得则为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过分钟人方可进入房间.故答案为:(1)2;(2)40【点睛】本题主要考查了分段函数的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)极大值,无极小值;(2)(3)见解析【解析】(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取得到,取,可得,累加和根据对数的
17、运算性和放缩法即可证明.【详解】解:(1)当时,设函数,则令,解得当时,当时,所以在上单调递增,在上单调递减所以当时,函数取得极大值,即极大值为,无极小值;(2)因为,所以,因为在区间上递增,所以在上恒成立,所以在区间上恒成立当时,在区间上恒成立,当时,设,则在区间上恒成立所以在单调递增,则,所以,即综上所述(3)由(2)可知当时,函数在区间上递增,所以,即,取,则所以所以【点睛】此题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于较难题.18() ()【解析】()根据条件由正弦定理得,又c2a,所以,由余弦定理算出,进而算出;()由二倍角公式算出,代入两角和的正弦
18、公式计算即可.【详解】() bsinBasinAasinC,所以由正弦定理得,又c2a,所以,由余弦定理得:,又,所以;(),.【点睛】本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.19(1)(2)(3)【解析】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,根据古典概型求出即可;(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“,则(E),求出即可;(3)根据题意,写出即可【
19、详解】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,有效问卷共有(份,其中受访者中膳食合理习惯良好的人数是人,故(A);(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,根据题意,可知(A),(B),(C),设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“则.所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯至少具备2个良好习惯的概率为0.766.(3)【点睛】本题考查了古典概型求概率,独立性事件,互斥性事件求概率等,考查运算能力和事件应用能力,中档题20(1);(2).【解析】(1)方程的两根为,由题意得,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前项和公式即可求出【详解】方程x25x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于深度学习的水面清洁机器人的设计与实现
- 事业单位考试公共基础知识真题及答案
- 安全文明施工标准化施工方案
- 无人机操作流程
- 篮球培训转介绍策略
- 三年级太阳说课
- 绿化工程规划安全生产培训
- 玻璃工艺三季度安全生产培训
- 小学二年级青岛版下学期数学期中复习必考题型
- 区块链一季度安全生产培训
- 江苏省南通市2025届高三第一次调研测试数学试题(南通一模)(含解析)
- 梅大高速塌方灾害调查评估报告及安全警示学习教育
- 福建省部分地市2025届高中毕业班第一次质量检测 生物试卷(含答案)
- 2024-2025学年上学期上海初中英语七年级期末模拟试卷2
- 神经外科患者卧位管理
- 部编人教版三年级下册语文教案(表格版)
- 民航服务心理学教案
- 成人重症患者人工气道湿化护理专家共识解读教学课件
- 起重作业安全教育培训
- 水果店入职培训
- DB15T3127-2023酿酒葡萄气候品质评价
评论
0/150
提交评论