版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若集合,则( )ABCD2若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )ABCD3若(是虚数单位),则的值为( )A3B5CD4已知,则 ()ABCD5中心在原点,对称
2、轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或6运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( )ABCD7已知直线与圆有公共点,则的最大值为( )A4BCD8已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,当取得最小值时,函数的解析式为( )ABCD9已知全集,集合,则阴影部分表示的集合是( )ABCD10元代数学家朱世杰的数学名著算术启蒙是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,则输出的( )A3B4C5D611已知m为实数,
3、直线:,:,则“”是“”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件12我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”如图就是一重卦在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知关于的方程在区间上恰有两个解,则实数的取值范围是_14直线是曲线的一条切线为自然对数的底数),则实数_.15曲线ye5x2在点(0,3)处的切线方程为_16 “北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点远地点离地面的距离大
4、约分别是,则“北斗三号”卫星运行轨道的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在,角、所对的边分别为、,已知.(1)求的值;(2)若,边上的中线,求的面积.18(12分)已知,.(1)求的值;(2)求的值.19(12分)在ABC中,角所对的边分别为向量,向量,且.(1)求角的大小;(2)求的最大值.20(12分)在中,角所对的边分别为,的面积.(1)求角C;(2)求周长的取值范围.21(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.22(10分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为
5、极轴建立极坐标系,曲线的极坐标方程为.()设直线与曲线交于,两点,求;()若点为曲线上任意一点,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【详解】解:由集合,解得,则故选:【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键属于基础题2B【解析】由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标
6、求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.3D【解析】直接利用复数的模的求法的运算法则求解即可.【详解】(是虚数单位)可得解得本题正确选项:【点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.4B【解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力5A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦
7、点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2或故选:A【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案6C【解析】模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,;第二次,;第三次,;第九十八次,;第九十九次,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.
8、7C【解析】根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即 ,解得,此时, 因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.8A【解析】先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.9D【解析】先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示
9、的集合.【详解】由,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.10B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解: 记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).11A【解析】根据直线平行的等价条
10、件,求出m的值,结合充分条件和必要条件的定义进行判断即可【详解】当m=1时,两直线方程分别为直线l1:x+y1=0,l2:x+y2=0满足l1l2,即充分性成立,当m=0时,两直线方程分别为y1=0,和2x2=0,不满足条件当m0时,则l1l2,由得m23m+2=0得m=1或m=2,由得m2,则m=1,即“m=1”是“l1l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.12C【解析】利
11、用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出【详解】因为
12、关于的方程在区间上恰有两个解,令,所以方程在 上只有一解,即有 ,直线与 在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综上实数的取值范围是.【点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式14【解析】根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求得切线方程,通过对比系数求得的值.【详解】,则,所以切点为,故切线为,即,故.故答案为:【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.15.【解析】先利用导数求切线的斜率,再写出切线方程.【详解】因为y5e5x
13、,所以切线的斜率k5e05,所以切线方程是:y35(x0),即y5x3.故答案为y5x3.【点睛】(1)本题主要考查导数的几何意义和函数的求导,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是16【解析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点远地点离地面的距离大约分别是,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,
14、着重考查了推理与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2)答案不唯一,见解析【解析】(1)由题意根据和差角的三角函数公式可得,再根据同角三角函数基本关系可得的值;(2)在中,由余弦定理可得,解方程分别由三角形面积公式可得答案【详解】解:(1)在中,因为,又已知,所以,因为,所以,于是.所以.(2)在中,由余弦定理得,得解得或,当时,的面积,当时,的面积.【点睛】本题考查正余弦定理理解三角形,涉及三角形的面积公式和分类讨论思想,属于中档题18(1)(2)【解析】(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(
15、2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.19(1)(2)2【解析】(1)转化条件得,进而可得,即可得解;(2)由化简可得,由结合三角函数的性质即可得解.【详解】(1),由正弦定理得,即,又 ,又 , 由可得.(2)由(1)可得,的最大值为2.【点睛】本题考查了平面向量平行、正弦定理以及三角恒等变换的应用,考查了三角函数的
16、性质,属于中档题.20()()【解析】()由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;()由,并结合正弦定理可得到,利用,可得到,进而可求出周长的范围【详解】解:()由可知,.由正弦定理得.由余弦定理得,.()由()知,.的周长为 .,,的周长的取值范围为.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题21(1)1;(2)证明见解析.【解析】(1)将不等式化为,求解得出,根据解集确定正数的值;(2)利用基本不等式以及不等式的性质,得出,三式相加,即可得证.【详解】(1)解:不等式,即不等式,而,于是依题意得(2)证明:由(1)知,原不等式可化为,同理,三式相加得,当且仅当时取等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《曲式与作品分析(2)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《英国文学作品选读》2023-2024学年第一学期期末试卷
- 淮阴师范学院《小学生品德发展与道德养成》2021-2022学年第一学期期末试卷
- 淮阴师范学院《固体废物处理与处置》2023-2024学年第一学期期末试卷
- 淮阴工学院《书籍设计2》2022-2023学年第一学期期末试卷
- 淮阴师范学院《会计电算化实训》2021-2022学年期末试卷
- DB1402T36-2024农村居家养老服务规范
- 拓展创新思维的企业教育培训考核试卷
- 塑料制品在船舶制造上的应用考核试卷
- 煤矿通风安全监测监控培训考核试卷
- 苏教版五年级上册数学试题-第一、二单元 测试卷【含答案】
- 发挥产业工会作用的实施方案
- 科捷物流介绍(中文版)ppt课件
- 军事地形学地形图基本知识
- 2022版义务教育(生物学)课程标准(含2022年修订和新增部分)
- 六年级综合实践活动课件-珍爱生命远离毒品 全国通用(共24张PPT)
- 建设工程竣工消防验收记录表(DOC36页)
- 沉井专项施工方案DOC
- 切削力计算参考模板
- 一年级海洋教育教案
- 聚氨酯硬泡沫配方及计算
评论
0/150
提交评论