版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高三数学精选知识点归纳 (总结)是事后对某一阶段的学习、工作或其完成状况加以回顾和分析的一种书面材料,通过它可以正确熟悉以往学习和工作中的优缺点,快快来写一份总结吧。下面是我给大家带来的(高三数学)精选学问点归纳,以供大家参考! 高三数学精选学问点归纳 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不行缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟识公理、定理的内容和功能,通过对问题的分析与概括,把握立体几何中解决问题的规律-充分利用线
2、线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高(规律思维)力量和空间想象力量。 2.判定两个平面平行的(方法): (1)依据定义-证明两平面没有公共点; (2)判定定理-证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; (3)两个平面平行的性质定理:“假如两个平行平面同时和第三个平(面相)交,那么它们的交线平行”; (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
3、 (5)夹在两个平行平面间的平行线段相等; (6)经过平面外一点只有一个平面和已知平面平行。 高三数学学问点归纳 1.等差数列的定义 假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列an的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 假如A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,mN_). (2)若an为等差数列,且m+n=p+q, 则am+an=ap+aq
4、(m,n,p,qN_). (3)若an是等差数列,公差为d,则ak,ak+m,ak+2m,(k,mN_)是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,也是等差数列. (5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 留意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+an, Sn=an+an-1+a1, +得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要擅长设元. (1)若奇数个数成等差数列且和为定值时,可设为,a-2d,a
5、-d,a,a+d,a+2d,. (2)若偶数个数成等差数列且和为定值时,可设为,a-3d,a-d,a+d,a+3d,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的推断方法 (1)定义法:对于n2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n3,nN_)都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来推断是否为等差数列,而不能用来证明等差数列. 高三数学必修一学问点大全 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x
6、)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0); (4)若所给函数的解析式较为简单,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单
7、调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直
8、线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)
9、是周期为2的周期函数; (6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程 (1)方程k=f(x)有解kD(D为f(x)的值域); (2)af(x)恒成立af(x)max,; af(x)恒成立af(x)min; (3)(a0,a1,b0,nR+); logaN=(a0,a1,b0,b1); (4)logab的符号由口诀“同正异负”记忆; alogaN=N(a0,a1,N0); 6.映射 推断对应是否为映射时,抓住两点: (1)A中元素必需都有象且; (2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象; 7.函数
10、单调性 (1)能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性; (2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 8.反函数 对于反函数,应把握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性; (5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA). 9.数形结合 处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系. 10.恒成立问题 恒成立问题的处理方法: (1)分别参数法; (2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游戏客服工作计划
- 2025初三班主任班级工作计划
- 4年度信息工作计划
- 小学年度工作计划范文2025年
- 幼儿园老师工作计划报告例文
- 制定销售计划书范文
- 电力工程设计组织计划
- 上证联合研究计划课题
- “新家庭计划-家庭发展能力建设”工作方案
- 《欧盟与欧元》课件
- 西安明德理工学院
- 建筑公司对项目部对管理办法
- 医务科运用PDCA循环提高危急值管理合格率品管圈成果汇报
- 构美-空间形态设计学习通课后章节答案期末考试题库2023年
- 民法典模考试题及答案
- 收款账户确认书
- IPTV系统的分析研究的开题报告
- 全北师大版英语必修一写作+范文
- 争做新时代好少年好队员主题班会ppt
- 桥梁养护资金保障制度
- 小学音乐大概念下的大单元教学设计探究 论文
评论
0/150
提交评论