下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022学年山东省德州市糜镇中学高二数学文下学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知ABC中,试判断ABC的形状是( )A等腰三角形B直角三角形C等边三角形D等腰三角形或直角三角形参考答案:A2. 已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程是 A. B. C. D.参考答案:B3. 已知向量,若为实数,则= ( )A、 B、 C、1 D、2参考答案:B4. 三个数的大小顺序是( )A. B. C. D.参考答案:5. 已知,若方
2、程的两个实数根可以分别作为一个椭圆和双曲线的离心率,则 ( ) A. B. C. D. 参考答案:A略6. 的展开式中的系数为 ( )(A)4 (B)6 (C)10 (D)20参考答案:B略7. 命题“若x21,则1x1”的逆否命题是()A若x21,则x1或x1B若1x1,则x21C若x1或x1,则x21D若x1或x1,则x21参考答案:D【考点】四种命题【分析】根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定【解答】解:原命题的条件是“若x21”,结论为“1x1”,则其逆否命题是:若x1或x1,则x21故选D8. 从1,2,3,4中随机选取一个数为,从1,2中随机选取一个数
3、为,则的概率是( ) A.B. C. D. 参考答案:A9. 已知,满足,则下列不等式成立的是 A. B. C. D. 参考答案:D略10. 在ABC中,bsinAab,则此三角形有( )A.一解 B.两解 C.无解 D.不确定参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 以下5个命题:(1)设,是空间的三条直线,若,则;(2)设,是两条直线,是平面,若,则;(3)设是直线,是两个平面,若,则;(4)设,是两个平面,是直线,若,则;(5)设,是三个平面,若,则.参考答案:(2),(4)略12. 函数的定义域为 参考答案:13. 在中,角所对应的边分别为,且,则角 参考答
4、案: 14. 已知F为抛物线的焦点,E为其标准线与x轴的交点,过F的直线交抛物线C于A,B两点,M为线段AB的中点,且,则 参考答案:8F(1,0)为抛物线C:y2=4x的焦点,E(-1,0)为其准线与x轴的交点,设过F的直线为y=k(x-1),代入抛物线方程y2=4x,可得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则中点解得k2=1,则x1+x2=6,由抛物线的定义可得|AB|=x1+x2+2=8.15. A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有 参考答案:16. 已知,且,设函数在上是减函数;方程有两
5、个不相等的实数根。若“”为假命题,“”为真命题,则的取值范围是 ;参考答案:17. 设A、B是抛物线上的两点,O为原点,且则直线AB必过定点_参考答案:三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2y2=9外,且对C1上任意一点M,M到直线x=2的距离等于该点与圆C2上点的距离的最小值.(1)求曲线C1的方程;(2)设P(x0,y0)(y03)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=4上运动时,四点A,B,C,D的纵坐标之积为定值.参考答案:
6、由题设知,曲线上任意一点M到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.(2)当点P在直线上运动时,P的坐标为,又,则过P且与圆相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是整理得 设过P所作的两条切线的斜率分别为,则是方程的两个实根,故 由得 设四点A,B,C,D的纵坐标分别为,则是方程的两个实根,所以 同理可得 于是由,三式得.所以,当P在直线上运动时,四点A,B,C,D的纵坐标之积为定值6400.19. 如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且PA底面ABCD,E是BC中点,F是PC上的点.(1)求证:平
7、面AEF平面PAD;(2)若M是PD的中点,F是PC的中点时,当AP为何值时,直线EM与平面AEF所成角的正弦值为,请说明理由.参考答案:(1)见证明(2)【分析】(1)连接,由是正三角形,是的中点,证得,又,得,利用线面垂直的判定定理得平面,得到,进而得到平面,最后利用面面垂直的判定定理,即可求解。(2)建立所示空间直角坐标系,令,求得平面的一个法向量,利用向量的夹角公式,列出方程,求得的值,即可【详解】(1)连接,因为底面为菱形,所以是正三角形,是的中点,平面,又,因为平面,平面,所以,又,所以平面,又平面,所以平面平面 (2)建立如图所示空间直角坐标系,令,则,则,设 是平面的一个法向量,则,得,设直线与平面所成角为,则, 化简得:0,解得, ,时,直线与平面的所成角的正弦值为.【点睛】本题考查了面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20. 用秦九韶算法求多项式当时的值。写出其算法,写出相应的程序语句.参考答案: 21. (7分)已知命题命题若命题是真命题,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年春初中化学九年级下册(科粤版)上课课件 8.2 常见的酸和碱 第1课时 常见的酸
- 黑龙江省哈尔滨市第一二四中学校2024-2025学年八年级上学期11月月考地理试题(含答案)
- 高一 数学 必修一第二章《等式性质与不等式性质(第2课时)》课件
- 思源大盘价值挖掘案例分享(星河湾)2017-64P
- 《模拟电路分析与实践》对口单招课程试卷1答案
- 高一 人教版 数学 第三、四章《直线与方程 圆与方程答疑》课件
- 高一 统编版必修上册- 语文 第六单元《上图书馆》课件
- 江苏省南京市鼓楼区2023-2024学年三年级上学期语文期末试卷
- 2025届湖北省鄂东南联盟高三上学期期中考试语文试题(学生版)
- 新人教版《悯农》课件
- 《望梅止渴》 完整版课件
- 再生医学概论
- 小学生心理健康教育课件
- XX镇2022年度农产品综合服务中心项目实施方案范本
- 《荆轲刺秦王》课件(共87张PPT)
- 早产儿保健管理
- aecopd护理查房课件
- TCECS 720-2020 钢板桩支护技术规程
- 自杀防范和案应急
- 中考作文备考:“此时无声胜有声”(附写作指导与佳作示例)
- TSG 81-2022 场(厂)内专用机动车辆安全技术规程
评论
0/150
提交评论