




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、七年级下册数学教课方案湘教版七年级下册数学教课方案湘教版9/9七年级下册数学教课方案湘教版七年级下册数学教课方案湘教版5.1订交线教课目的经过着手、操作、推测、沟通等活动,进一步发展空间观点,培育识图能力,推理能力和有条理表达能力在详细情境中认识邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题教课要点与难点要点:邻补角与对顶角的观点.对顶角性质与应用难点:理解对顶角相等的性质的研究教课方案.创建情境激发好奇察看剪刀剪布的过程,引入两条订交直线所成的角在我们的生活的世界中,蕴涵着大批的订交线和平行线,本章要研究订交线所成的角和它的特点。察看剪刀剪布
2、的过程,引入两条订交直线所成的角。学生察看、思虑、回答以下问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,使劲握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师评论:假如把剪刀的结构看作是两条订交的直线,以上就关系到两条直线订交所成的角的问题,二认识邻补角和对顶角,研究对顶角性质1学生画直线AB、CD订交于点O,并说出图中4个角,两两相当共能构成几对角?依据不一样的地点怎么将它们分类?学生思虑并在小组内沟通,全班沟通。当学生直观地感知角有“相邻”、“对顶”关系时,教师指引学生用几何语言正确表达;有公共的极点O,并且的两边分别是两边的反向延伸线2学生用量角器分
3、别量一量各角的度数,发现各种角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)学生依据察看和胸怀达成下表:两条直线订交所形成的角分类地点关系数目关系教师发问:假如改变的大小,会改变它与其余角的地点关系和数目关系吗4归纳形成邻补角、对顶角观点和对顶角的性质三初步应用练习:以下说法对不对1)邻补角能够当作是平角被过它极点的一条射线分红的两个角2)邻补角是互补的两个角,互补的两个角是邻补角3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解说剪刀剪布过程中所看到的现象四稳固运用例题:如图,直线a,b订交,求的度数。稳固练习(教科书5页练习)已知,如图,求:的度数小
4、结邻补角、对顶角.作业课本P9-1,2P10-7,8备选题一判断题:假如两个角有公共极点和一条公共过,并且这两个角互为补角,那么它们互为邻补角()两条直线订交,假如它们所成的邻补角相等,那么一对对顶角就互补()二填空题1如图,直线AB、CD、EF订交于点O,的对顶角是,的邻补角是若:=2:3,则=2如图,直线AB、CD订交于点O则5.1.2垂线教课目的1理解垂线、垂线段的观点,会用三角尺或量角器过一点画已知直线的垂线。2掌握点到直线的距离的观点,并会胸怀点到直线的距离。3掌握垂线的性质,并会利用所学知识进行简单的推理。教课要点与难点1教课要点:垂线的定义及性质。2教课难点:垂线的画法。教课过程
5、设计一.复习发问:1、表达邻补角及对顶角的定义。2、对顶角有如何的性质。二新课:前言:前面我们复习了两条订交直线所成的角,假如两条直线订交成特别角直角时,这两条直线有如何特别的地点关系呢?平时生活中有没有这方面的实例呢?下边我们就来研究这个问题。(一)垂线的定义当两条直线订交的四个角中,有一个角是直角时,就说这两条直线是相互垂直的,此中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。如图,直线AB、CD相互垂直,记作,垂足为O。请同学举出平时生活中,两条直线相互垂直的实例。注意:1、如碰到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线相互垂直。2、掌握以下的推理
6、过程:(如上图)反之,(二)垂线的画法研究:1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右挪动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延伸线上。(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只好画出一条垂线,即:性质1过一点有且只有一条直线与已知直线垂直。练习:教材第7页研
7、究:如图,连结直线l外一点P与直线l上各点O,A,B,C,此中(我们称PO为点P到直线的垂线段)。比较线段PO、PA、PB、PC的长短,这些线段中,哪一条最短?性质2连结直线外一点与直线上各点的全部线段中,垂线段最短。简单说成:垂线段最短。(四)点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。如上图,PO的长度叫做点P到直线l的距离。例11)AB与AC相互垂直;2)AD与AC相互垂直;3)点C到AB的垂线段是线段AB;4)点A到BC的距离是线段AD;5)线段AB的长度是点B到AC的距离;6)线段AB是点B到AC的距离。此中正确的有()A.1个B.2个C.3个D.4个解:A例2如图,直线AB,CD订交于点O,解:略例3如图,一辆汽车在直线形公路AB上由A向B行驶,M,N分别是位于公路双侧的乡村,设汽车行驶到点P地点时,距离乡村M近来,行驶到点Q地点时,距离乡村N近来,请在图中公路AB上分别画出P,Q两点地点。练习:1.教材第9页3、4教材第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- access知识点课件教学课件
- 2025年广东省深圳实验学校高三5月定时练习生物试题试卷含解析
- 山东管理学院《药剂学》2023-2024学年第二学期期末试卷
- 苏州科技大学天平学院《美学与医学美学实验》2023-2024学年第一学期期末试卷
- 呼和浩特民族学院《精确农业概论》2023-2024学年第二学期期末试卷
- 药品使用质量管理规范
- 网购行业发展现状
- 白城职业技术学院《专业外语粉体建材》2023-2024学年第二学期期末试卷
- 脊柱疾病病人的护理
- 2025年辽宁省阜新二中高三5月阶段检测试题英语试题试卷含解析
- 肺结节诊治中国专家共识(2024年版)解读
- 值班岗亭施工方案
- 生命体征观察与护理-体温单绘制(护理技术课件)
- 2024年金华市中考数学试卷
- 建筑工地食堂承包协议(2024版)
- 红绿灯路口施工合同
- 血液透析抗凝技术的应用及护理
- 北京海淀区重点高中高一物理下学期期中考试试卷含答案
- 《中药种植技术》课件-第九章 药用植物的采收、加工与贮运
- 2024年4月自考00155中级财务会计试题及答案
- 2024年注册安全工程师考试题库及参考答案【完整版】
评论
0/150
提交评论