LTI系统复频域分析的MATLAB实现_第1页
LTI系统复频域分析的MATLAB实现_第2页
LTI系统复频域分析的MATLAB实现_第3页
LTI系统复频域分析的MATLAB实现_第4页
LTI系统复频域分析的MATLAB实现_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验项目名称:LTI系统复频域分析的MATLAB实现上机实验题目:拉氏变换与Z变换的基本性质在系统分析中的应用实验项目的目的和任务:掌握拉氏变换、Z变换的基本性质及其在系统分析中的典型应用实验题目:第9章第10章实验过程9a_1b=1,5 0;a=1,2,3;zs=roots(b)ps=roots(a)plot(real(zs),imag(zs),o);hold onplot(real(ps),imag(ps),x);gridaxis(-5 2 -2 2);运行截图:9a_2b=2,5,12;a=1,2,10;zs=roots(b)ps=roots(a)plot(real(zs),imag(z

2、s),o);hold onplot(real(ps),imag(ps),x);gridaxis(-10 10 -10 10);运行截图:9a_3b=2,5,12;a=1,4,14,20;zs=roots(b)ps=roots(a)plot(real(zs),imag(zs),o);hold onplot(real(ps),imag(ps),x);gridaxis(-10 10 -10 10);运行截图:9c、经过拉氏变换之后得到的系统函数为:Hs=s2+2s+5s-3b=1,2,5;a=1,-3;zs=roots(b)ps=roots(a)plot(real(zs),imag(zs),o);h

3、old onplot(real(ps),imag(ps),x);gridaxis(-10 10 -10 10);运行截图:10、dpzplot函数代码:function dpzplot(b,a)la=length(a);lb=length(b);if (lalb) b=b zeros(1,la-lb);elseif (lbla) a=a zeros(1,lb-la);endps=roots(a);zs=roots(b);mx=max(abs(ps zs .95)+0.05;clgaxis(-mx mx -mx mx);axis(equal);hold onw=0:0.01:2*pi;plot(

4、cos(w),sin(w),.);plot(-mx mx,0 0);plot(0 0,-mx mx);text(0.1,1.1,Im,sc);text(1.1,0.1,Re,sc);plot(real(ps),imag(ps),rx);plot(real(zs),imag(zs),ro);numz=sum(abs(zs)=0);nump=sum(abs(ps)=0);if numz1 text(-.1,-.1,num2str(numz);elseif nump1 text(-.1,-.1,num2str(nump);endhold offend10ab=1 -1 0;a=1 3 2;dpzpl

5、ot(b,a);运行截图:10b经过Z变换之后可以得到:Hz=11+z-1+0.5z-2b=1 0 0;a=1 1 0.5;dpzplot(b,a);运行截图:10c经过Z变换之后可以得到Hz=1+0.5z-11-1.25z-1+0.75z-2-0.125z-3b=1 0.5 0 0;a=1 -1.25 0.75 -0.125;dpzplot(b,a);运行截图:实验总结这次实验较以往的实验都容易,基本上就是按照课本上的程序来重新输入一遍就几乎能得到结果了,所以能很快完成。但是还需要大家对拉普拉斯变换和z变换有一定的了解,而且需要知道roots函数的用法。附录资料:MATLAB的30个方法1

6、内部常数pi 圆周率 exp(1)自然对数的底数ei 或j 虚数单位Inf或 inf 无穷大 2 数学运算符a+b 加法a-b减法a*b矩阵乘法a.*b数组乘法a/b矩阵右除ab矩阵左除a./b数组右除a.b数组左除ab 矩阵乘方a.b数组乘方-a负号 共轭转置.一般转置3 关系运算符=等于大于=大于或等于=不等于4 常用内部数学函数 指数函数exp(x)以e为底数对数函数log(x)自然对数,即以e为底数的对数log10(x)常用对数,即以10为底数的对数log2(x)以2为底数的x的对数开方函数sqrt(x)表示x的算术平方根绝对值函数abs(x)表示实数的绝对值以及复数的模三角函数(自变

7、量的单位为弧度)sin(x)正弦函数cos(x)余弦函数tan(x)正切函数cot(x)余切函数sec(x)正割函数csc(x)余割函数反三角函数 asin(x)反正弦函数acos(x)反余弦函数atan(x)反正切函数acot(x)反余切函数asec(x)反正割函数acsc(x)反余割函数双曲函数 sinh(x)双曲正弦函数cosh(x)双曲余弦函数tanh(x)双曲正切函数coth(x)双曲余切函数sech(x)双曲正割函数csch(x)双曲余割函数反双曲函数 asinh(x)反双曲正弦函数acosh(x)反双曲余弦函数atanh(x)反双曲正切函数acoth(x)反双曲余切函数asech

8、(x)反双曲正割函数acsch(x)反双曲余割函数求角度函数atan2(y,x)以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度,范围为( , 数论函数gcd(a,b)两个整数的最大公约数lcm(a,b)两个整数的最小公倍数排列组合函数factorial(n)阶乘函数,表示n的阶乘 复数函数 real(z)实部函数imag(z)虚部函数abs(z)求复数z的模angle(z)求复数z的辐角,其范围是( , conj(z)求复数z的共轭复数求整函数与截尾函数ceil(x)表示大于或等于实数x的最小整数floor(x)表示小于或等于实数x的最大整数round(

9、x)最接近x的整数最大、最小函数max(a,b,c,)求最大数min(a,b,c,)求最小数符号函数 sign(x)5 自定义函数-调用时:“返回值列=M文件名(参数列)”function 返回变量=函数名(输入变量) 注释说明语句段(此部分可有可无)函数体语句 6进行函数的复合运算compose(f,g) 返回值为f(g(y)compose(f,g,z) 返回值为f(g(z)compose(f,g,x,.z) 返回值为f(g(z)compose(f,g,x,y,z) 返回值为f(g(z)7 因式分解syms 表达式中包含的变量 factor(表达式) 8 代数式展开syms 表达式中包含的变

10、量 expand(表达式)9 合并同类项syms 表达式中包含的变量 collect(表达式,指定的变量)10 进行数学式化简syms 表达式中包含的变量 simplify(表达式)11 进行变量替换syms 表达式和代换式中包含的所有变量 subs(表达式,要替换的变量或式子,代换式)12 进行数学式的转换调用Maple中数学式的转换命令,调用格式如下:maple(Maple的数学式转换命令) 即:maple(convert(表达式,form)将表达式转换成form的表示方式 maple(convert(表达式,form, x) 指定变量为x,将依赖于变量x的函数转换成form的表示方式(此

11、指令仅对form为exp与sincos的转换式有用) 13 解方程solve(方程,变元) 注:方程的等号用普通的等号: = 14 解不等式调用maple中解不等式的命令即可,调用形式如下: maple(maple中解不等式的命令)具体说,包括以下五种:maple( solve(不等式)) maple( solve(不等式,变元) ) maple( solve(不等式,变元) ) maple( solve(不等式,变元) ) maple( solve(不等式,变元) )15 解不等式组调用maple中解不等式组的命令即可,调用形式如下: maple(maple中解不等式组的命令) 即:mapl

12、e( solve(不等式组,变元组) )16 画图方法:先产生横坐标的取值和相应的纵坐标的取值,然后执行命令: plot(x,y) 方法2:fplot(f(x),xmin,xmax) fplot(f(x),xmin,xmax,ymin,ymax) 方法3:ezplot(f(x) ezplot(f(x) ,xmin,xmax) ezplot(f(x) ,xmin,xmax,ymin,ymax) 17 求极限(1)极限:syms x limit(f(x), x, a) (2)单侧极限:左极限:syms x limit(f(x), x, a,left)右极限:syms x limit(f(x), x

13、, a,right) 18 求导数diff(f(x) diff(f(x),x) 或者:syms x diff(f(x) syms x diff(f(x), x) 19 求高阶导数 diff(f(x),n) diff(f(x),x,n)或者:syms x diff(f(x),n)syms x diff(f(x), x,n) 20 在MATLAB中没有直接求隐函数导数的命令,但是我们可以根据数学中求隐函数导数的方法,在中一步一步地进行推导;也可以自己编一个求隐函数导数的小程序;不过,最简便的方法是调用Maple中求隐函数导数的命令,调用格式如下: maple(implicitdiff(f(x,y)

14、=0,y,x) 在MATLAB中,没有直接求参数方程确定的函数的导数的命令,只能根据参数方程确定的函数的求导公式 一步一步地进行推导;或者,干脆自己编一个小程序,应用起来会更加方便。21 求不定积分 int(f(x) int (f(x),x)或者:syms x int(f(x) syms x int(f(x), x) 22 求定积分、广义积分 int(f(x),a,b) int (f(x),x,a,b)或者:syms x int(f(x),a,b) syms x int(f(x), x,a,b) 23 进行换元积分的计算自身没有提供这一功能,但是可以调用Maple函数库中的changevar命

15、令,调用方法如下:maple( with(student) ) 加载student函数库后,才能使用changevar命令maple( changevar( m(x)=p(u), Int(f(x),x) ) ) 把积分表达式中的m(x)代换成p(u)24 进行分部积分的计算自身没有提供这一功能,但是可以调用Maple函数库中的intparts命令,调用方法如下: maple( with(student) ) 加载student函数库后,才能使用intparts命令maple(intparts(Int(f(x),x),u) ) 指定u,用分部积分公式 进行计算25 对数列和级数进行求和 syms n symsum(f(n), n a ,b )26 进行连乘 maple(product(f(n),n=a.b)27 展开级数syms x taylor(f(x), x, n, a )28 进行积分变换syms s t laplace( f(t), t, s ) 拉普拉斯变换 ilaplace( F(s), s, t ) 拉普拉斯变换的逆变换 syms t fourier( f(t), t, ) 傅立叶变换 ifourier( F(), , t ) 傅立叶变换的逆变换 syms n z ztrans( f(n)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论