版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学因式分解的九种方法备考2021中考指导 我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。下面是小偏整理的数学因式分解的九种方法备考2021中考指导,感谢您的每一次阅读。 数学因式分解的九种方法备考2021中考指导 一、运用公式法 我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 二、平方差公式 1、式子: a2-b2=(a+b)(
2、a-b) 2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 三、因式分解 1.因式分解时,各项假如有公因式应先提公因式,再进一步分解。 2.因式分解,必需进行到每一个多项式因式不能再分解为止。 四、完全平方公式 1、把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来, 就可以得到:a2+2ab+b2=(a+b)2 和 a2-2ab+b2=(a-b)2,这两个公式叫完全平方公式。 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的
3、式子叫完全平方式。 2、完全平方式的形式和特点:项数:三项;有两项是两个数的的平方和,这两项的符号相同;有一项是这两个数的积的两倍。 3、当多项式中有公因式时,应当先提出公因式,再用公式分解。 4、完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 5、分解因式,必需分解到每一个多项式因式都不能再分解为止。 五、分组分解法 我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。 假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。 原式=(am+an)+
4、(bm+bn)=a(m+n)+b(m+n) 做到这一步不叫把多项式分解因式,由于它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能连续分解,所以:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。 六、提公因式法 1、在运用提取公因式法把一个多项式因式分解时,首先观看多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设帮助元的方法把它
5、转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或转变符号,直到可确定多项式的公因式. 2、运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要留意: (1)必需先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。 (2)将常数项分解成满意要求的两个因数积的多次尝试,一般步骤: 列出常数项分解成两个因数的积各种可能状况; 尝试其中的哪两个因数的和恰好等于一次项系数。 3、将原多项式分解成(x+q)(x+p)的形式。 七、分式的乘除法 1、把一个分式的分子与分母的公因式约去,叫做分式的
6、约分。 2、分式进行约分的目的是要把这个分式化为最简分式。 3、假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。 4、分式约分中留意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3。 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简洁的分式之分子分母可直接乘方. 6.留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减. 八、
7、分数的加减法 1、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。 2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。 3、一般地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作预备。 4、通分的依据:分式的基本性质。 5、通分的关键:确定几个分式的公分母。通常取各分母的全部因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 6、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分
8、式,叫做分式的通分。 7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。 9、同分母分式相加减,分母不变,只须将分子作加减运算,但留意每个分子是个整体,要适时添上括号。 10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。 11、异分母分式的加减运算,首先观看每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。 12、作为最终结果,假如
9、是分式则应当是最简分式。 九、含有字母系数的一元一次方程 引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,依据题意,可得方程 ax=b(a0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必需特殊留意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 帮助线的九种添加方法 1添帮助线有二种状况 1按定义添帮助线: 如证明二直线垂直可延长使它们,相交后证交角为90;证线段倍半关系可倍线段取中点或半线段加倍;证角的
10、倍半关系也可类似添帮助线。 2按基本图形添帮助线: 每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添帮助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应当叫做“补图”!这样可防止乱添线,添帮助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中消失平行线时添帮助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简洁的基本图形: 当几何问题中消失一点发出的二条相等线段时往往要补完整等腰三角形。消失角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 消失等腰三角形底边
11、上的中点添底边上的中线;消失角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 消失直角三角形斜边上的中点往往添斜边上的中线。消失线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中消失多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当消失线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当消失线段倍半关系且与半线段的端点
12、是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;假如消失两条相等线段或两个档相等角关于某始终线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。 当几何问题中消失一组或两组相等线段位于一组对顶角两边且成始终线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相像三角形: 相像三角形有平行线型(带平行线的相像三角形),相交线型,旋转型;当消失相比线段重叠在始终线上时(中点可看成比为1)可添加平行线得平行线型相像三角形。若平行线过
13、端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特别角直角三角形 当消失30,45,60,135,150度特别角时可添加特别角直角三角形,利用45角直角三角形三边比为1:1:2;30度角直角三角形三边比为1:2:3进行证明 (9)半圆上的圆周角 消失直径与半圆上的点,添90度的圆周角;消失90度的圆周角则添它所对弦-直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。 2基本图形的帮助线的画法 1.三角形问题添加帮助线方法 方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,经常利用三角形的中位线,通过这种方法,把
14、要证的结论恰当的转移,很简单地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的学问解决问题。 方法3:结论是两线段相等的题目常画帮助线构成全等三角形,或利用关于平分线段的一些定理。 方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采纳截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于其次条线段。 2.平行四边形中常用帮助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添帮助线方法上也有共同之处,目的都
15、是造就线段的平行、垂直,构成三角形的全等、相像,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相像或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等. 3.梯形中常用帮助线的添法 梯形是一种特别的四边形。它是平行四边形、三角形学问的综合,通过添加适当的帮助线将梯形问题化归为平行四边形问题或三角形问题来解决。帮助线的添加成为
16、问题解决的桥梁,梯形中常用到的帮助线有: (1)在梯形内部平移一腰。 (2)梯形外平移一腰 (3)梯形内平移两腰 (4)延长两腰 (5)过梯形上底的两端点向下底作高 (6)平移对角线 (7)连接梯形一顶点及一腰的中点。 (8)过一腰的中点作另一腰的平行线。 (9)作中位线 当然在梯形的有关证明和计算中,添加的帮助线并不肯定是固定不变的、单一的。通过帮助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。 4.圆中常用帮助线的添法 在平面几何中,解决与圆有关的问题时,经常需要添加适当的帮助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,敏捷
17、把握作帮助线的一般规律和常见方法,对提高同学分析问题和解决问题的力量是大有关心的。 (1)见弦作弦心距 有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。 (2)见直径作圆周角 在题目中若已知圆的直径,一般是作直径所对的圆周角,利用直径所对的圆周角是直角这一特征来证明问题。 (3)见切线作半径 命题的条件中含有圆的切线,往往是连结过切点的半径,利用切线与半径垂直这一性质来证明问题。 (4)两圆相切作公切线 对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。 (5)两圆相交作公共弦 对两圆相交的问
18、题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。 3作帮助线的方法 1中点、中位线,延线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作帮助线,使延长的某一段等于中线或中位线;另一种帮助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 2垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,这时帮助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 3边边若相等,旋转做试验。 如遇条件中有多边形的两边相等或两角相等,有时边角相互协作,然后把图形旋转肯定的角度,就可以得到全等形,这时帮助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 4造角、平、相像,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相像形有关。在制造两个三角形相像时,一般地,有两种方法:第一,造一个帮助角等于已知角;其次,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相像,和差积商见。” 托列米定理和梅叶劳定理的证明帮助线分别是造角和平移的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度度假酒店户外活动项目经营权转让合同
- 2024年度服务分期提供合同3篇
- excel公式与函数课件
- 幼儿园教学课件下载
- 2024中国移动江西公司三季度社会招聘15人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信集团限公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度网络安全与防护合同协议参考样本2篇
- 2024中国水利水电建设工程咨询西北限公司招聘54人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国天辰工程限公司校园招聘75人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中化集团产品经理招聘4人(北京)易考易错模拟试题(共500题)试卷后附参考答案
- 居民自建桩安装告知书回执
- 2022年教育部教育管理信息中心招聘考试真题
- 新能源及多能互补互补技术
- 荷载与结构设计方法《期末考试复习题》
- 《行香子》(树绕村庄)(课件)-九年级语文上册
- 违纪学生撤销(降级)处分申请表
- 高职院校师资建设五年规划
- 第14课 漂亮的房间(导学案)苏少版美术四年级上册
- 骶髂关节痛诊疗专家共识2021
- 光伏施工脚手架施工方案
- 危重患者早期识别与评估
评论
0/150
提交评论