版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Spatial DataWhat is special about Spatial Data?Briggs Henan University 20121What is needed for spatial analysis?Location informationa mapAn attribute dataset: e.g population, rainfallLinks between the locations and the attributesSpatial proximity informationKnowledge about relative spatial locationT
2、opological informationBriggs Henan University 20122Topology-knowledge about relative spatial positioningTopography-the form of the land surface, in particular, its elevation Berrys geographic matrixlocationAttributes or variablesVariable 1Variable 2Variable Pareal unit 1areal unit 2.areal unit nloca
3、tionAttributes or variablesPopulation eVariable Pareal unit 1areal unit 2.areal unit nlocationAttributes or VariablesPopulation eVariable PHenanShanxi.areal unit ntimegeographicassociationsgeographicdistributiongeographicfactBerry, B.J.L 1964 Approaches to regional analysis: A synthesis . Annals of
4、the Association of American Geographers, 54, pp. 2-112010199020003Briggs Henan University 2012Briggs Henan University 20124Types of Spatial DataContinuous (surface) dataPolygon (lattice) dataPoint dataNetwork dataBriggs Henan University 20125Spatial data type 1: Continuous (Surface Data)Spatially co
5、ntinuous dataattributes exist everywhereThere are an infinite number locationsBut, attributes are usually only measured at a few locationsThere is a sample of point measurementse.g. precipitation, elevationA surface is used to represent continuous dataBriggs Henan University 20126Spatial data type 2
6、: Polygon Datapolygons completely covering the area*Attributes exist and are measured at each locationArea can be: irregular (e.g. US state or China province boundaries) regular (e.g. remote sensing images in raster format)Briggs Henan University 20127*Polygons completely covering an area are called
7、 a latticeSpatial data type 3: Point dataPoint patternThe locations are the focusIn many cases, there is no attribute involvedBriggs Henan University 20128Spatial data type 4: Network dataAttributes may measure the network itself (the roads)Objects on the network (cars)We often treat network objects
8、 as point data, which can cause serious errorsCrimes occur at addresses on networks, but we often treat them as pointsBriggs Henan University 20129See: Yamada and Thill Local Indicators of network-constrained clusters in spatial point patterns. Geographical Analysis 39 (3) 2007 p. 268-292Which will
9、we study? Point data(point pattern analysis: clustering and dispersion)Polygon data* (polygon analysis: spatial autocorrelation and spatial regression)Continuous data*(Surface analysis: interpolation, trend surface analysis and kriging) Briggs Henan University 2012101: Analyzing Point Patserns (clus
10、terirg and dispersion)2: Analyzing Polygons (Spatial Autocorrelation and Spatial Regression models)3Surface analysis: nterpolation, trend surface analysis and kriging)*in the fall semesterConverting from one type of data to another.-very common in spatial analysisBriggs Henan University 201211Conver
11、ting point to continuous data:interpolation12Briggs Henan University 2012InterpolationFinding attribute values at locations where there is no data, using locations with known data valuesUsually based onValue at known locationDistance from known locationMethods usedInverse distance weightingKrigingBr
12、iggs Henan University 201213Simple linear interpolationUnknownKnownConverting point data to polygons using Thiessen polygons 14Briggs Henan University 2012Thiessen or Proximity Polgons(also called Dirichlet or Voronoi Polygons)Polygons created from a point layer Each point has a polygon (and each po
13、lygon has one point)any location within the polygon is closer to the enclosed point than to any other pointspace is divided as evenly as possible between the polygonsAThiessen or Proximity Polygons15Briggs Henan University 2012How to create Thiessen PolygonsBriggs Henan University 2012161. Connect p
14、oint to its nearest (closest) neighbor2. Draw perpendicular line at midpoint3. Repeat for other points4. Thiessen polygonsConverting polygon to point data using CentroidsCentroidthe balancing point for a polygonused to apply point pattern analysis to polygon dataMore about this laterBriggs Henan Uni
15、versity 201217Using a polygon to represent a set of points: Convex Hullthe smallest convex polygon able to contain a set of pointsno concave angles pointing inwardA rubber band wrapped around a set of points “reverse” of the centroidConvex hull often used to create the boundary of a study areaa “buf
16、fer” zone often added Used in point pattern analysis to solve the boundary problem.Called a “guard zone”No!Briggs Henan University 201218Models for Spatial Data:Raster and Vectortwo alternative methods for representing spatial dataBriggs Henan University 201219Real WorldVector RepresentationRaster R
17、epresentationConcept of Vector and Rasterlinepolygonpoint20Briggs Henan University 2012houserivertreesComparing Raster and Vector ModelsRaster Modelarea is covered by grid with (usually) equal-size, square cellsattributes are recorded by giving each cell a single value based on the majority feature
18、(attribute) in the cell, such as land use type or soil typeImage data is a special case of raster data in which the “attribute” is a reflectance value from the geomagnetic spectrum cells in image data often called pixels (picture elements)Vector ModelThe fundamental concept of vector GIS is that all
19、 geographic features in the real work can be represented either as:points or dots (nodes): trees, poles, fire plugs, airports, citieslines (arcs): streams, streets, sewers,areas (polygons): land parcels, cities, counties, forest, rock type Because representation depends on shape, ArcGIS refers to fi
20、les containing vector data as shapefiles21Briggs Henan University 2012Raster modelBriggs Henan University 201222cornwheatfruitcloverfruit012345678901234567891111144555111114455511111445551111144555111114455522222223332222222333222222233322442223332244222333Land use (or soil type)18621Each cell (pixe
21、l) has a value between 0 and 255 (8 bits)ImageVector Modelpoint (node): 0-dimensionssingle x,y coordinate pairzero areatree, oil well, location for label line (arc): 1-dimensiontwo connected x,y coordinatesroad, streamA network is simply 2 or more connected linespolygon : 2-dimensionsfour or more or
22、dered and connected x,y coordinates first and last x,y pairs are the sameencloses an areacounty, lake 1278.x=7Point: 7,2y=2Line: 7,2 8,1Polygon: 7,2 8,1 7,1 7,21278121127823Briggs Henan University 2012Using raster and vector models to represent surfacesBriggs Henan University 201224Representing Surf
23、aces with raster and vector models 3 waysContour linesLines of equal surface valueGood for maps but not computers!Digital elevation model (raster)raster cells record surface valueTIN (vector)Triangulated Irregular Network (TIN)triangle vertices (corners) record surface valueBriggs Henan University 2
24、01225Contour (isolines) Lines for surface representationAdvantagesEasy to understand (for most people!)Circle = hill top (or basin) Downhill = ridgeUphill = valleyCloser lines = steeper slopeDisadvantagesNot good for computer representationLines difficult to store in computer Contour lines of consta
25、nt elevation-also called isolines (iso = equal)Raster for surface representationEach cell in the raster records the height (elevation) of the surface Briggs Henan University 201227Raster cells(Contain elevation values)Surface105110115120Raster cells with elevation valueContour linesa set of non-over
26、lapping triangles formed from irregularly spaced pointspreferably, points are located at “significant” locations, bottom of valleys, tops of ridges Each corner of the triangle (vertex) has: x, y horizontal coordinates z vertical coordinate measuring elevation.Triangulated Irregular Network (TIN):Vec
27、tor surface representationvalleyridgevertex12435Draft: How to Create a TIN surface:from points to surfaces Briggs Henan University 201229Thiessen3.jpgThiessen4.jpgLinks together all spatial concepts: point, line, polygon, surfaceUsing raster and vector models to represent polygons(and points and lin
28、es)Briggs Henan University 201230Representing Polygons (and points and lines) with raster and vector modelsBriggs Henan University 201231Raster model not goodnot accurateAlso a big challenge for the vector modelbut much more accuratethe solution to this challenge resulted in the modern GIS system012
29、345678901234567891111144555111114455511111445551111144555111114455522222223332222222333222222233322442223332244222333XUsing Raster model for points, lines and polygons-not good!Briggs Henan University 201232Polygon boundary not accurateLine not accuratePoint located at cell center-even if its notPoi
30、nt “lost” if two points in one cellFor pointsFor lines and polygonsUsing vector model to represent points, lines and polygons:Node/Arc/Polygon TopologyThe relationships between all spatial elements (points, lines, and polygons) defined by four concepts: Node-ARC relationship:specifies which points (
31、nodes) are connected to form arcs (lines)Arc-Arc relationship specifies which arcs are connected to form networks Polygon-Arc relationshipdefines polygons (areas) by specifying which arcs form their boundary From-To relationship on all arcs Every arc has a direction from a node to a node This allows
32、This establishes left side and right side of an arc (e.g. street) Also polygon on the left and polygon on the right for every side of the polygon LeftRightfromto33Briggs Henan University 2012fromtoNew!BirchCherryIIIIIIIV143Node/Arc/ Polygon and Attribute DataExample of computer implementationSpatial
33、 DataAttribute DataA35SmithEstateA34234Briggs Henan University 2012This is how a vector GIS system works!This data structure was invented by Scott Morehouse at the Harvard Laboratory for Computer Graphics in the 1960s.Another graduate student named Jack Dangermond hired Scott Morehouse, moved to Red
34、lands, CA, started a new company called ESRI Inc., and created the first commercial GIS system, ArcInfo, in 1971Modern GIS was born! Briggs Henan University 201235Other ways to represent polygons with vector model2. Whole polygon structure3. Points and Polygons structureUsed in earlier GIS systems b
35、efore node/arc/polygon system inventedStill used today for some, more simple, spatial data (e.g. shapefiles)Discuss these if we have time!Briggs Henan University 201236Vector Data Structures: Whole PolygonWhole Polygon (boundary structure): list coordinates of points in order as you walk around the
36、outside boundary of the polygon.all data stored in one file coordinates/borders for adjacent polygons stored twice; may not be same, resulting in slivers (gaps), or overlapall lines are double (except for those on the outside periphery)no topological information about polygons which are adjacent and
37、 have a common boundary?used by the first computer mapping program, SYMAP, in late 1960sused by SAS/GRAPH and many later business mapping programsStill used by shapefiles.Topology-knowledge about relative spatial positioning - knowledge about shared geometryTopography-the form of the land surface, in particular, its elevati
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版技术咨询合同(含技术成果归属与支付报酬)
- 2024版货物买卖合同的货物描述与交易条件
- 二零二四年度人才培养与产品委托加工合同
- 2024年度高铁车辆采购及安装施工合同
- 二零二四年度演出经纪合同:周杰伦演唱会经纪公司与中国移动达成合作
- 2024年度软土基坑支护施工合同
- 二零二四年度大型科学仪器共享合同
- 北京工业大学耿丹学院《论文写作》2023-2024学年第一学期期末试卷
- 2024版桥梁建设施工合同
- 2024年度物业公司提供物业节能改造合同
- 2024年劳务员考试题库【夺冠】
- 2024届高考高考英语高频单词素材
- 回收PET塑料资源化利用及产业化进展研究
- 《住院患者身体约束的护理》团体标准解读课件
- 安全事故管理考核办法范本(2篇)
- 2024-2030年中国医疗垃圾处理行业发展趋势及投资规划分析报告
- 英语-重庆市(重庆南开中学)高2025届高三第三次质量检测试题和答案
- 2024年安全员C证考试题库附答案很全
- DB11-239-2021 车用柴油环保技术要求
- 三好学生竞选17
- 泌尿科运用PDCA循环降低输尿管鏡激光碎石术后严重感染的发生率品管圈QCC成果汇报(赴台汇报版)
评论
0/150
提交评论