函数的奇偶性可用_第1页
函数的奇偶性可用_第2页
函数的奇偶性可用_第3页
函数的奇偶性可用_第4页
函数的奇偶性可用_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、函数的奇偶性可用第1页,共17页,2022年,5月20日,9点35分,星期一第2页,共17页,2022年,5月20日,9点35分,星期一第3页,共17页,2022年,5月20日,9点35分,星期一第4页,共17页,2022年,5月20日,9点35分,星期一第5页,共17页,2022年,5月20日,9点35分,星期一xy0第6页,共17页,2022年,5月20日,9点35分,星期一函数的奇偶性第7页,共17页,2022年,5月20日,9点35分,星期一观察下图,思考并讨论以下问题:(1) 这两个函数图象有什么共同特征吗?(2) 相应的两个函数值对应表是如何体现这些特征的?f(x)=x2f(x)=

2、|x|x-3-2-10123f(x)=xx-3-2-10123f(x)=|x|94101499410149 实际上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x),这时我们称函数y=x2为偶函数.第8页,共17页,2022年,5月20日,9点35分,星期一1偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数 例如,函数 都是偶函数,它们的图象分别如下图(1)、(2)所示.第9页,共17页,2022年,5月20日,9点35分,星期一 观察函数f(x)=x和f(x)=1/x的图象(下图),你能发现两个函数图象有什么共同特征吗?

3、f(-3)=-3=-f(3) f(-2)=-2=-f(2) f(-1)=-1=-f(1) 实际上,对于R内任意的一个x,都有f(-x)=-x=-f(x),这时我们称函数y=x为奇函数.f(-3)=-1/3=-f(3) f(-2)=-1/2=-f(2) f(-1)=-1=-f(1)第10页,共17页,2022年,5月20日,9点35分,星期一2奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)= f(x),那么f(x)就叫做奇函数 注意: 1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定

4、义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称)第11页,共17页,2022年,5月20日,9点35分,星期一3、奇、偶函数定义的逆命题也成立,即 若f(x)为奇函数,则f(-x)=-f(x)有成立. 若f(x)为偶函数,则f(-x)=f(x)有成立.4、如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.第12页,共17页,2022年,5月20日,9点35分,星期一例5、判断下列函数的奇偶性:3.用定义判断函数奇偶性的步骤:(1)、先求定义域,看是否关于原点对称;(2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.第13页,

5、共17页,2022年,5月20日,9点35分,星期一课堂练习判断下列函数的奇偶性:第14页,共17页,2022年,5月20日,9点35分,星期一3.奇偶函数图象的性质1、奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数.2、偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数.说明:奇偶函数图象的性质可用于: a、简化函数图象的画法. B、判断函数的奇偶性第15页,共17页,2022年,5月20日,9点35分,星期一例3、已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象.xy0解:画法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论