安徽省池州市青山中学2022-2023学年高二数学理月考试卷含解析_第1页
安徽省池州市青山中学2022-2023学年高二数学理月考试卷含解析_第2页
安徽省池州市青山中学2022-2023学年高二数学理月考试卷含解析_第3页
安徽省池州市青山中学2022-2023学年高二数学理月考试卷含解析_第4页
安徽省池州市青山中学2022-2023学年高二数学理月考试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、安徽省池州市青山中学2022-2023学年高二数学理月考试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,则a,b,c的大小关系为A. B. C. D. 参考答案:A【分析】利用利用等中间值区分各个数值大小。【详解】;。故。故选A。【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待。2. 已知集合A=x|x2=2,B=1,2,则AB=( )AB2C,1,2D2,1,2参考答案:A【考点】交集及其运算【专题】集合【分析】根据集合的基本运算进行求解即可【解答】解:A=x|x2=2=,B=1,2,则AB=,故

2、选:A【点评】本题主要考查集合的基本运算,比较基础3. 如表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,则下列结论错误的是()x3456y2.5t44.5A产品的生产能耗与产量呈正相关Bt的取值必定是3.15C回归直线一定过点(4,5,3,5)DA产品每多生产1吨,则相应的生产能耗约增加0.7吨参考答案:B【考点】BK:线性回归方程【分析】先求出这组数据的,把代入线性回归方程,求出,即可得到结果【解答】解:由题意, =4.5,=0.7x+0.35,=0.74.5+0.

3、35=3.5,t=43.52.544.5=3,故选:B4. 九章算术中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.”为了计算每天良马和驽马所走的路程之和,设计框图如图.若输出的S的值为350,则判断框中可以填入( )A B C D参考答案:B由程序框图可知,该程序的功能是求等差数列的通项,该等差数列首项为290,公差为10,由,解得,所以判断框中可以填入,故选B.5. 函数的图象可能是( )A. B. C. D. 参考答案:A【分析】由当时,可得,当且时,可得,利用排除法,即可求解,得到答案【详解】

4、由题意,当时,可得,所以排除,项,当且时,可得,所以排除项,故选A.【点睛】本题主要考查了函数图象的识别,其中解答中根据函数的解析式,判定函数的取值范围,合理排除是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题6. 过抛物线的焦点F作直线交抛物线于,两点,如果,那么( )A. 10B. 9C. 6D. 4参考答案:B【分析】依据抛物线的定义,可以求出点A,B到准线距离,即可求得的长。【详解】抛物线的准线方程是,所以,故选B。【点睛】本题主要考查抛物线定义的应用以及过焦点弦的弦长求法。7. 对于大于1的自然数的三次幂可用奇数进行以下方式的“分裂”:,仿此,若的“分裂数”中有一个是61

5、,则的值是( ) A. 6 B.7 C. 8 D. 9参考答案:C8. 在图216的算法中,如果输入A138,B22,则输出的结果是()A2 B4 C128 D0参考答案:A9. 用反证法证明命题“三角形三个内角至少有一个不大于60”时,应假设()A三个内角都不大于60B三个内角都大于60C三个内角至多有一个大于60D三个内角至多有两个大于60参考答案:B【考点】反证法的应用【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可【解答】解:用反证法证明在一个三角形中,至少有一个内角不大于60,第一步应假设结论不成立,即假设三个内角都大于60故选:B10. 下列函数中,在上为增函

6、数的是 ( )A B HYPERLINK / C D HYPERLINK / 参考答案:A二、 填空题:本大题共7小题,每小题4分,共28分11. 如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点,则点取自ABE内部的概率等于_参考答案:略12. 要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为_(以数字作答)参考答案:288略13. 若对于任意xR,都有(m2)x22(m2)x40恒成立,则实数m的取值范围是 。参考答案:(2,2) 14. 若曲线y=与直线x+ym=0有一个交点,则

7、实数m的取值范围是参考答案:【考点】曲线与方程【专题】综合题;数形结合;综合法;直线与圆【分析】化简曲线y=,作出图象,即可得出结论【解答】解:x290,曲线y=,可化为x2y2=9(y0),x290,曲线y=,可化为x2+y2=9(y0),图象如图所示,直线与半圆相切时,m=3,双曲线的渐近线为y=x实数m的取值范围是故答案为:【点评】本题考查曲线与方程,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题15. 已知,如图,在梯形ABCD中,AD/BC,AD=3,BC=7,点M,N分别是对角线BD,AC的中点,则MN等于 .参考答案:2略16. 一个直径为厘米的圆柱形水桶中放入一

8、个铁球,球全部没入水中后,水面升高厘米则此球的半径为_厘米.参考答案: 解析:17. 已知,则中共有项参考答案:三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (本小题满分15分)设函数,求的单调区间与极值.参考答案: 19. (本题10分)已知函数 (1)利用函数单调性的定义,判断函数在上的单调性; (2)若,求函数在上的最大值。参考答案:解:(1)设, 则(2分) 因为,所以,所以(3分) 所以在上单调递增。(4分) (2)由(1)可知,当时,(5分) , 若,则在上单调递减,的最大值为(6分)若在上单调递减,在上单调递增,(7分)且, 所以当时,的最

9、大值为,(8分) 当时,的最大值为(9分) 综上,(10分)20. (13分)根据政府的要求,某建筑公司拟用1080万购一块空地,计划在该空地上建造一栋每层1500米的高层经济适用房,经测算,如果将适用房建为x(xN*)层,则每平方的平均建筑费用为800+50 x(单位:元)(1)写出拟建适用房每平方米的平均综合费用y关于建造层数x的函数关系式;(2)改适用房应建造多少层时,可使适用房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)参考答案:【考点】基本不等式在最值问题中的应用【专题】应用题;函数思想;综合法;不等式【分析】(1)由已知

10、得,楼房每平方米的平均综合费为每平方米的平均建筑费用为800+50 x与平均购地费用的和,由已知中某单位用1080万元购得一块空地,计划在该地块上建造一栋x层,每层1500平方米的楼房,我们易得楼房平均综合费用y关于建造层数x的函数关系式;(2)由(1)中的楼房平均综合费用y关于建造层数x的函数关系式,要求楼房每平方米的平均综合费用最小值,先利用基本不等式,检验等号成立的条件,即可求最小值【解答】解(1)依题意得y=(800+50 x)+=800+50 x+(xN*);(2)由y=800+50 x+800+1200=2000,当且仅当50 x=,即x=12时取得等号,故该公寓应建造12层时,可使公寓每平方米的平均综合费用最少,最小值为2000元【点评】函数的实际应用题,我们要经过审题建模解模还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一21. 设椭圆的两个焦点是,且椭圆上存在点使得直线与直线垂直。求椭圆离心率的取值范围;若直线与椭圆另一个交点为,当,且的面积为时,求椭圆方程。参考答案:解:由是直角三角形知,即,故设椭圆方程为,由得:直线的斜率,设直线的方程为:,于是椭圆方程可化为: 把代入,得:,整理得:,设则x1、x2是上述方程的两根,且,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论