钙钛矿太阳能电池材料_第1页
钙钛矿太阳能电池材料_第2页
钙钛矿太阳能电池材料_第3页
钙钛矿太阳能电池材料_第4页
钙钛矿太阳能电池材料_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、在能源紧缺的现代社会,为了维持人类的可持续发展,科学家们一直致力于新能源的研究,其中至少在几十亿年内都取之不尽的太阳能便成了热门的研究对象。太阳能电池大家都不陌生,它通过光电效应或者光化学效应直接把光能转化成电能。钙钛矿材料我们也很熟悉,就是一类有着与钛酸钙(CaTiO3相同晶体结构的材料,其结构式一般为ABX3其中A和B是两种阳离子,X是阴离子。但钙钛矿太阳能电池却是一个比较新的概念。2009年日本桐荫横滨大学的宫坂力教授将碘化铅甲胺和溴化铅甲胺应用于染料敏化太阳能电池,获得了最高3.8%的光电转化效率,此为钙钛矿光伏技术的起点但它直到2014年左右才被人们重视起来。是因为在短短几年间其效率

2、一直在显著提升,这是NRELh实验室最高电池效率的图,我们可以看出钙钛矿材料的效率上升速率远远超过了其他同类型材料。钙钛矿材料被认为是最有可能取代硅晶材料作为太阳能电池的材料概述钙钛矿太阳电池一般采用有机无机混合结晶材料一一如有机金属三卤化物CH3NH3PbX3X=CI,Br,I)作为光吸收材料。该材料具有合适的能带结构,其禁带宽度为1.5eV,因与太阳光谱匹配而具有良好的光吸收性能,很薄的厚度就能够吸收几乎全部的可见光并用于光电转换。如图所示,这是钙钛矿太阳能电池的一般结构结构,由上到下分别为玻璃、1FTO电子传输层(ETM、钙钛矿光敏层、空穴传输层(HTM和金属电极。其中电子传输层常常用T

3、iO2钙钛矿电池一个显著的特点是IV曲线(伏安曲线)的滞后(l-Vhysteresis)(通常叫滞后现象或迟滞现象),一般从反向扫描(开路电压-短路电流)得到的曲线比正向扫描(短路电流一开路电压)看起来好很多。现在对钙钛矿的这种现象还没有一个很好的解释,目前比较合理的解释是:钙钛矿材料具有很强的铁电性能(ferroelectricity)以及巨大的介电常数,导致电池的低频电容很大,比其他任何一种光伏电池都显著。文献我选取了五篇有关钙钛矿太阳能电池的文献,第一篇是篇综述,主要内容是现在有机夹层在有机-无机杂化钙钛矿太阳能电池中的研究进展;第二三篇分别从滞后现象以及离子移动的机理上进行分析;第四五

4、篇主要从介绍了的某个钙钛矿太阳能电池材料。有机-无机杂化钙钛矿太阳能电池(PSC是最有希望的第三代太阳能电池。它们具有良好的功率转换效率(PCE且能耗更低。为了提高PSC的效率和长期稳定性,有机分子经常用作“夹层”。以改变太阳能电池中特定界面提高性能。该篇文献回顾了使用夹层来优化PSC性能的最新进展。本文分为三个部分。第一部分着重于介绍为什么有机分子夹层能够提高太阳能电池的性能;第二部分讨论常用的分子中间层;在最后一部分,讨论了制作薄均匀夹层的方法。这张图展现了在有机-无机杂化钙钛矿太阳能电池中四种可能加入夹层的位置而作为夹层的材料可能是有机小分子,高聚物,金属氧化物等文献中提到通过控制薄膜的

5、结晶度、厚度和粗糙度,钙钛矿型吸收层的形态是生产高效率PSC的关键。图二a,b是表面改性引起的形貌变化的扫描电镜图像。氧化锌的表面能可以通过改变亲水基团(-NH2)和疏水基团(-CH3)的混合比例进行有效地调整。随基质表面能的减小有机夹层的表面的缺陷也有所减少,从而导致了电池性能的提升。图二c,d表现了(c3-sam)自组装单分子层作为ch3nh3pbi3钙钛矿层和ZnO电子选择层间夹层的影响。最终结果是,所制备的电池的PCE增加了31%从9.8提高到14.2%。同时,该分子的氨基末端还参与了钙钛矿的结晶,改善了薄膜的形貌有机分子夹层作用机制(图三,图四)在PSC中,晶体结构的缺陷和化学杂质会

6、产生陷阱态从而增加电子与空穴的重新复合(导带与价带的能量差减小了),导致电压下降。而有机分子可以使表面钝化以减少在表面的陷阱态/缺陷。小分子通过发生化学反应,可以与表面非键原子或表面的悬挂键结合,降低表面缺陷数以减小陷阱态的作用。可以自组装的分子,通过自组装在金属氧化物上形成单分子膜,也可以改变表面能。由于表面复合的减少和形态的改善,电池的性能可以得到改善。X-和Pb2+可以形成陷阱态而作为复合中心(卤素阴离子作为空穴陷阱和铅离子作为电子陷阱),可以分别用路易斯酸和路易斯碱结合。如图所示,在表面上未饱和成键的I-用路易斯酸结合,未饱和成键的Pb2+用路易斯碱结合实验证明,用噻吩和吡啶处理钙钛矿

7、层后,效率从13勉高到15.3%和16.5%。文献第二部分主要介绍了常用的一些有机分子夹层,其中PCE较高的有对氯苯甲酸,B-氨基丙酸,乙醇胺等小分子,这里具体的细节就不过多叙述。文献第三部分介绍了制作夹层的方法夹层可以通过溶液处理或气相沉积来制备。所选择的方法取决于所沉积材料的性质和沉积的表面。图五说明了用于制备薄层的三种最常用的方法,即浸涂、旋涂和热蒸发。值得注意的是,当使用溶液处理的方法时,需要考虑溶剂对层间形态的影响。夹层在沉积层的溶剂中的稳定性也很重要。图六展现了通过缓慢从液体中提取底物,可以得到均匀的分子层的过程第一个运用了朗格缪尔-布洛杰特技术,基层侵入两亲分子溶液中,亲水的基团

8、在基质的表面聚集并结合,经过冲洗干燥后可以得到单分子层。第二个是自组装分子,用于固定的头部基团与基质的表面结合,尾部的功能基团还可以和下一个分子的头部基团结合,从而可以得到单分子或多分子层。这篇文献主要调查了最近在PSC上使用有机分子进行界面改性的进展。有很多例子证明了有机分子层可以增加PCE以及钙钛矿太阳能电池装置的长期稳定性。文章最后总结到低成本、易于设计、修饰和纯化的小分子使它们成为进行界面工程的理想候选者。但分子需要慎重选择,要确保他们在长时间内能保持稳定,以保持设备的稳定运行。2选取的第二篇文献研究了可调控的滞后效应IV曲线的滞后是钙钛矿太阳能电池(PSCS一大特点,他将导致设备效率

9、的计算不准确。目前已经有许多对迟滞效应出现的机理的研究。普遍认为离子迁移,电荷捕获/逃脱和电荷积累是解释迟滞效应的理论基础。然而,迟滞效应的真正起因却仍未明晰。该文献作者通过调整c-TiO2(致密TiO2)层的喷涂沉积次数并用紫外臭氧处理,实现了正常滞后效应,无滞后效应,反转滞后效应的PSCs下图为典型介观钙钛矿电池的结构及工作机理FTO(掺杂氟的SnO2透明导电玻璃)/C-tio2/mp-tio2(介孔二氧化钛层”氧化锆/碳/钙钛矿设备的结构。钙钛矿通过简单的滴注法渗透到mp-tio2,氧化锆和碳的介孔层间。图b显示了钙钛矿电池的工作机理。钙钛矿吸收电子并输送到mp-tio2和C-Tio2层

10、,而产生的空穴转移到孔碳层从而实现电子空穴对的分离。这是调整c-TiO2(致密TiO2)层的喷涂沉积次数得到的钙钛矿太阳能电池的不同迟滞效应的J-V曲线当C-TiO2层喷涂次数为三次或四次时,可以观察到典型迟滞效应器件的J-V曲线,反扫的性能优于正扫性能;当减少两个喷涂次数的时候,观察到无迟滞效应器件的J-V曲线,正反扫性能一致;当只有一个喷涂次数的时候,观察到反转迟滞效应器件的J-V曲线,反扫性能低于正扫性能。除了扫描方向,作者还改变了扫描速率图3:不同迟滞效应器件的性能随扫速的变化关系典型迟滞效应器件;无迟滞效应器件;反转迟滞效应器件。从图中可以看到,扫描速率也对滞后效应一定的影响,其中在

11、某些数值上约有10%勺变化,但总体上说,扫描速率的影响不大(VOC开路电压,Jsc:短路电流,FF:填充因子,pce功率转换效率)下面的两张图很清楚的总结了滞后效应指数与c-TiO2喷涂次数以及扫描速率的关系,c-TiO2喷涂次数减少导致滞后效应指数下降,但扫描速率基本无影响。迟滞效应指数与c-TiO2喷涂次数的关系曲线;迟滞效应指数与扫描速率的关系曲线。图7提供了界面处电荷积累和偏振特征的图像。无偏压下c-TiO2/钙钛矿界面层的能带图;小偏压下c-TiO2/钙钛矿界面层的能带图;大偏压下c-TiO2/钙钛矿界面层的能带图。表现了能带及电荷复合的过程偏压增大的情况下,界面因为极化逐渐向相反的

12、方向弯曲,同时导致了空穴的积累,这种在C-tio2/钙钛矿型界面稳定积累的阳离子和电子空穴,提高了W同时这些空穴和阳离子会与来自接触面的二氧化钛的电子在表面结合。作者认为这种电荷积累缓慢的动态变化导致了所观察到的不同的滞后效应。由于较薄的C-tio2表面能增大,有着更大的功函数,使得在给定的正向扫描电压下可以有更多的电荷积累,因此电压可以继续增大,而反扫电压是逐渐减小的,就没有这样的表现,反应在伏安特性曲线上就是反转的滞后效应通过对这种可调的滞后效应的研究,作者认为是TiO2/钙钛矿界面的极化导致这种可调节滞后现象,这种极化可以可逆地累积正电荷。对滞后效应成功地调整,证明了C-TiO2/钙钛矿

13、界面在控制滞后趋势的重要性。为钙钛矿电池的迟滞效应提供了重要的见解。第三篇文献离子移动是有机无机杂化钙钛矿中的热门话题。它和钙钛矿太阳能电池的反常光伏效应,钙钛矿材料的巨介电常数等特殊性能密切相关。在钙钛矿太阳能电池中,一般认为离子应该去除,因为大量离子移动会带来材料相分离和电池稳定性差的问题。很少有人关注离子移动带来的优点。本篇文献的作者通过在钙钛矿骨架中引入少量小的锂离子和外来碘离子,借助于外电场中外来离子的移动,阐明一定的离子移动/聚集在钙钛矿材料中形成了外来的n/p型掺杂。这种外来非本征掺杂有助于电池内建电场的提高以及载流子的迅速抽取。离子移动示意图及电化学性能测试。外来离子在钙钛矿骨

14、架中移动;钙钛矿离子电导随锂离子增多而增大;反式钙钛矿太阳能电池中NiO/钙钛矿界面电子抽取,含离子的抽取变快实验表明,LiI添加剂不会改变钙钛矿晶型。Li+最可能在钙钛矿结构的空隙中转移并停留,而I-通常组成八面体的结构形成空隙。这个曲线表明随着钙钛矿中锂离子的增多,钙钛矿的电导随之增大因为LiI掺杂使导电性增加,从而会加快从钙钛矿到NiO的界面电荷转移,使反式钙钛矿太阳能电池中NiO/钙钛矿界面电子抽取,含Li2+离子的抽取速率变快图2.能级测量原理及掺杂类型。这是设计的使用原子力显微镜表面电势测试钙钛矿/FTO以及钙钛矿界面的能级的装置(一半涂有FTQ巴拉巴拉)通过对FTO加不同偏压,在

15、界面形成离子聚集,测试得到表面电势在没有偏压的情况下,含Li+2%掺杂的电势差要小于不含Li掺杂的,VN的减小意味着在界面所损耗的能量会减少,从而促进电子从li+2%进入FTO4由图所示,0.5V的偏压下LI2%勺表面电位比li-0低约40mV而-0.5V的偏压下LI2%的表面电位比li-0高约50mV。理论计算和实验结果证明,Li+离子在阴极附近的积累将引起n型掺杂,而I-阳极附近形成p型掺杂。正偏压下I-聚集在FTQ因为I-不易失去电子,所以产生的空穴容易积累形成p型掺杂,同理负偏压下Li+聚集在FTQ而Li+不易得到电子,容易使电子积累形成n型掺杂。图3.性能表征少量离子掺杂有助于电池效

16、率提升,并减小迟滞效应;(li-0有明显的迟滞效应,而掺杂了5%勺Li以后正扫反扫的伏安特性曲线基本重合,掺杂li2%,5%的短路电流和开路电压都大于无li掺杂的)夕卜来离子在界面聚集使得电池內建电场增强,使电压增大,从而提高电池性能。不同于钙钛矿自身本征的离子移动将会带来大量的缺陷态,但这种外来的离子移动不会形成相分离。因而对钙钛矿太阳能电池性能提高以及保持器件稳定性有积极作用。第四篇文献有机-无机钙钛矿太阳能电池(PSC中吸收层的形成和组成有助于实现功率转换效率(PCE20%。钙钛矿太阳能电池由上到下分别为玻璃、FTO电子传输层(ETM、钙钛矿光敏层、空穴传输层(HTM和金属电极。目前较高

17、效率的钙钛矿太阳能电池保留TO层,并使用螺-OMeTAD或聚合物的PTTA作为空穴传输材料(HTM。然而,这些成本对于大规模应用来说是非常高的。各种无机HTMS!中,CuSC是一个极其廉价的、可以量产的P型半导体材料,具有高的空穴迁移率、良好的热稳定性,和均衡的工作性能。作者通过动态沉积的方法制得CuSCb薄膜。图一,涂覆在玻璃和钙钛矿上CuSCN薄膜的结构表征CuSCN晶体一般在两个多晶型,a-CuSCN和B-CuSCN,X射线衍射数据(图1A)表明动态沉积的方法制得的是B-CuSCN图一b,c是CuSCF和CuSCN钙钛矿薄膜掠入射广角X射线散射(GIWAXS的图像。可以看到涂有CuSCN

18、t反射变得更加强烈。图d,e表明了CuSCNM子的排布方向,铜原子和硫原子构成了一个个分子层骨架,而碳原子和氮原子将层与层之间连接起来。(红色、铜原子、黄色、硫原子、灰色、碳原子、蓝色、氮原子)扫描电子显微镜(SEIM获得的钙钛矿薄膜图像表明CuSCNg沉积是均匀覆盖的,在金与钙钛矿层之间。从稳态和随时间的光致发光光谱中看到CuseN丐钛矿层无论是发光强度还是稳定性都远远优于其他层。同时即使CuSCh设备在85C下长时间加热,也没有观察到明显的降解,证明其有较好的热稳定性。图三,基于螺-OMeTAD口CuSC空穴传输层的器件的光伏特性可以看到用CuSCN作为空穴传输层的器件与目前性能较优越的用

19、螺-OMeTAD作为空穴传输层的器件光伏特性差别很小,曲线几乎重合,证明有CuSCb涂层的器件性能较好。使用CuSCN作为空穴传输层的钙钛矿太阳能电池,有着较好的运行稳定性和热稳定性,同时也有着较高的功率转换效率,加上价格低廉,有着很好的应用前景。第五篇文献除了有机-无机卤化物钙钛矿,有些纯无机卤化物钙钛矿也适合做太阳能电池。在那些纯无机卤化物钙钛矿中,a-CaPbl3有着最合适应用于串联太阳能电池的带隙,但它有着在一些环境条件下不稳定的问题,在室温条件下将自发地转变为的S-CaPbI3相。作者发现含少量乙二胺(EDA阳离子的二维(2D)EDAPbl4钙钛矿可以使a-由此产生的a-CaPbI3

20、结CaPbI3稳定,避免了非钙钛矿S相的不稳定构造构在室温下可以保持几个月的稳定性,即使在经过100OC的热处理一周后也能保持原来的相。作者一开始用Pbl2+Csl或PbI2XHI+Csl作为前驱物制备a-CaPbl3通过将等当量的Pbl2+Csl或PbI2xHI+Csl溶于DMF中一步沉积制备CsPbb薄膜图一是CsPbl3薄膜的光谱、结构表征以及电池性能、稳定性测试紫外可见吸收光谱XRD图谱;基于a-CsPbl3钙钛矿太阳能电池的l-V曲线通过Pbl2xHl+Csl制备的CsPbl3薄膜退火前后的XRD和薄膜颜色变化从图中可以看到,由Pbl2+Csl制备a-CsPbl3钙钛矿的的UV-vi

21、s在414nm处有吸收峰和在X射线衍射图谱(XRD中9.78处有峰表明有多余非钙钛矿S-CaPbI3相的形成。虽然用Pbl2xHl+Csl制备的棕色CsPbl3薄膜在一开始通过X射线衍射图谱(XRD可以证明是纯的a-CaPbI3相,但长时间下也有不稳定的问题,由图D可以看到在十二小时之后棕色的a-cspbi3薄膜转变成了黄色的S-cspbi3薄膜。图二:EDAPbl和CsPbl3xEDAPbl薄膜的结构表征和光谱研究作者之后尝试了添加EDAPb4EDAPb4是一种二维材料,从下图可以看到,其XRD有位于29=6的峰,UV-vis中有420nm的吸收峰但通过XRD和cspbi3xedapbi4样

22、品紫外-可见光谱(C和D)可以看到。不论他们的edapbi4含量(X),所有的XRD图谱都只有a-cspbi3钙钛矿相的特征峰。没有edapbi4相对应的信号(低于29=10峰),这表明没有的edapbi4晶相或极细的edapbi4层或晶体的形成。之后对其的I-V曲线进行表征又可以看到与纯的cspbi3的曲线有明显不同,说明有这些薄膜中有EDA阳离子的存在。(图三)由CsPbbxEDAPb前驱体(x=0,0.0125,0.025,和0.05)获得的钙钛矿薄膜的AFM图SEM图扫描电子显微镜(SEM和原子力显微镜图像(AFM)(图3,A和B)表明,cspbi3xedapbi4晶粒尺寸随着edap

23、bi4含量增加而显著减小,大约从300nm(x=0)减小到35nm(x=0.025)CsPbIaxEDAPb钙钛矿太阳能电池的I-V特征曲线CsPbI30.025EDAPb钙钛矿太阳能电池的稳定输出基于CsPbb0.025EDAPb钙钛矿的IPCE32个CsPbI30.025EDAPb钙钛矿太阳能电池的效率分布从J-V曲线提取光伏参数(图4A)列于表1。发现,cspbi3xedapbi4(x=0.0125到0.05)的设备比那些基于纯cspbi3有更好的性能。所有的光电参数(JSC,VOC,andFF)都有所增强,其中从表中数据可以看出x=0,025时,CsPbbxEDAPbl钙钛矿太阳能电池性能最好图b(基本稳定在10%图c(光电转化效率在波长350nm-600nm之间有60%以上,400-500nm达到了80%最咼有86%图d(主要分布在10%-11%图5、基于CsPbb0.025EDAPb器件和薄膜的稳定性测试最佳CsPbb0.025EDAPb电池效率随时间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论